Nina Zhang, Véronique M.P. de Bruijn, Weijia Zheng, Wouter Bakker, Bennard van Ravenzwaay, Ivonne M.C.M. Rietjens
{"title":"Antibiotics reduce intestinal bile acid reuptake in an in vitro model system","authors":"Nina Zhang, Véronique M.P. de Bruijn, Weijia Zheng, Wouter Bakker, Bennard van Ravenzwaay, Ivonne M.C.M. Rietjens","doi":"10.1016/j.tiv.2025.106071","DOIUrl":null,"url":null,"abstract":"<div><div>Enterohepatic circulation of bile acids is a highly efficient process that is important for bile acid homeostasis. The aim of the present study was to characterize the impact of a series of antibiotics (lincomycin, streptomycin, vancomycin and tobramycin) on the intestinal reuptake of conjugated bile acids (TCA, TCDCA, GCA and GCDCA) using a Caco-2 <em>in vitro</em> transwell model system. The results obtained demonstrate that both pre-exposure and co-exposure of the cells to an antibiotic and the bile acids, affected bile acid transport, to an extent that depended on the antibiotic, its concentration and the type of conjugated bile acid tested. Tobramycin, at concentrations in line with dose levels at which this antibiotic induced effects on bile acid homeostasis <em>in vivo</em>, appeared able to inhibit bile acid transport after pre-exposure of the cells, likely resulting from an effect on the expression of bile acid transporters <em>via</em> its effects on protein synthesis at ribosome level. Upon co-exposure of the Caco-2 cells to an antibiotic and the bile acids, all four antibiotics appeared to significantly reduce the transport of especially the conjugated bile acids TCDCA and GCDCA with a potency that decreased in the order vancomycin > tobramycin = streptomycin > lincomycin. The effects observed illustrate the possibility of using a new approach methodology (NAM) to study effects on intestinal bile acid reuptake.</div></div>","PeriodicalId":54423,"journal":{"name":"Toxicology in Vitro","volume":"107 ","pages":"Article 106071"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology in Vitro","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0887233325000657","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Enterohepatic circulation of bile acids is a highly efficient process that is important for bile acid homeostasis. The aim of the present study was to characterize the impact of a series of antibiotics (lincomycin, streptomycin, vancomycin and tobramycin) on the intestinal reuptake of conjugated bile acids (TCA, TCDCA, GCA and GCDCA) using a Caco-2 in vitro transwell model system. The results obtained demonstrate that both pre-exposure and co-exposure of the cells to an antibiotic and the bile acids, affected bile acid transport, to an extent that depended on the antibiotic, its concentration and the type of conjugated bile acid tested. Tobramycin, at concentrations in line with dose levels at which this antibiotic induced effects on bile acid homeostasis in vivo, appeared able to inhibit bile acid transport after pre-exposure of the cells, likely resulting from an effect on the expression of bile acid transporters via its effects on protein synthesis at ribosome level. Upon co-exposure of the Caco-2 cells to an antibiotic and the bile acids, all four antibiotics appeared to significantly reduce the transport of especially the conjugated bile acids TCDCA and GCDCA with a potency that decreased in the order vancomycin > tobramycin = streptomycin > lincomycin. The effects observed illustrate the possibility of using a new approach methodology (NAM) to study effects on intestinal bile acid reuptake.
期刊介绍:
Toxicology in Vitro publishes original research papers and reviews on the application and use of in vitro systems for assessing or predicting the toxic effects of chemicals and elucidating their mechanisms of action. These in vitro techniques include utilizing cell or tissue cultures, isolated cells, tissue slices, subcellular fractions, transgenic cell cultures, and cells from transgenic organisms, as well as in silico modelling. The Journal will focus on investigations that involve the development and validation of new in vitro methods, e.g. for prediction of toxic effects based on traditional and in silico modelling; on the use of methods in high-throughput toxicology and pharmacology; elucidation of mechanisms of toxic action; the application of genomics, transcriptomics and proteomics in toxicology, as well as on comparative studies that characterise the relationship between in vitro and in vivo findings. The Journal strongly encourages the submission of manuscripts that focus on the development of in vitro methods, their practical applications and regulatory use (e.g. in the areas of food components cosmetics, pharmaceuticals, pesticides, and industrial chemicals). Toxicology in Vitro discourages papers that record reporting on toxicological effects from materials, such as plant extracts or herbal medicines, that have not been chemically characterized.