Interactions between daily sleep-wake rhythms, γ-secretase, and amyloid-β peptide pathology point to complex underlying relationships

IF 4.2 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Savannah M. Turton , Samantha Padgett , M. Tyler Maisel , Carrie E. Johnson , Valeria A. Buzinova , Sarah E. Barth , Katharina Kohler , Heather M. Spearman , Teresa Macheda , Elena C. Manauis , Landys Z. Guo , Haleigh R. Whitlock , Adam D. Bachstetter , Sridhar Sunderam , Bruce F. O'Hara , Marilyn J. Duncan , M. Paul Murphy
{"title":"Interactions between daily sleep-wake rhythms, γ-secretase, and amyloid-β peptide pathology point to complex underlying relationships","authors":"Savannah M. Turton ,&nbsp;Samantha Padgett ,&nbsp;M. Tyler Maisel ,&nbsp;Carrie E. Johnson ,&nbsp;Valeria A. Buzinova ,&nbsp;Sarah E. Barth ,&nbsp;Katharina Kohler ,&nbsp;Heather M. Spearman ,&nbsp;Teresa Macheda ,&nbsp;Elena C. Manauis ,&nbsp;Landys Z. Guo ,&nbsp;Haleigh R. Whitlock ,&nbsp;Adam D. Bachstetter ,&nbsp;Sridhar Sunderam ,&nbsp;Bruce F. O'Hara ,&nbsp;Marilyn J. Duncan ,&nbsp;M. Paul Murphy","doi":"10.1016/j.bbadis.2025.167840","DOIUrl":null,"url":null,"abstract":"<div><div>Disrupted or insufficient sleep is a well-documented risk factor for Alzheimer's disease (AD) and related dementias. Previous studies in our lab and others have shown that chronic fragmentation of the daily sleep-wake rhythm in mice can accelerate the development of AD-related neuropathology in the brain, including increases in the levels of amyloid-β (Aβ). Although sleep is known to increase clearance of Aβ via the glymphatic system, little is known about the effect of sleep on Aβ production and the role this might play in amyloid deposition. To examine the relationship of Aβ production and its interaction with sleep and sleep dysfunction, we treated mice from an APP × PS1 mutant knock-in line (APP<sup>ΔNLh/ΔNLh</sup> × PS1<sup>P264L/P264L</sup>) with an inhibitor of γ-secretase (LY-450,139; Semagacestat®) during a protocol of mild sleep fragmentation (SF). Compared to the male mice, the female mice slept less, and had more Aβ pathology. Semagacestat treatment reduced Aβ, but only in the most soluble extractable fraction. Although the female mice showed an increase in the amount of Aβ following SF, this effect was blocked by Semagacestat, an effect that was not seen in the male mice. SF also led to a significant, sex-dependent changes in the relative amounts of C-terminal fragments of the amyloid precursor protein, the immediate substrate of the γ-secretase enzyme. These findings indicate that the relationship between disruption of the daily sleep-wake rhythm and the development of AD-related pathology is complex, and may involve unappreciated interactions with biological sex. Consideration of these factors is necessary for a better understanding of AD risk, especially the elevated risk in women.</div></div>","PeriodicalId":8821,"journal":{"name":"Biochimica et biophysica acta. Molecular basis of disease","volume":"1871 6","pages":"Article 167840"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular basis of disease","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925443925001851","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Disrupted or insufficient sleep is a well-documented risk factor for Alzheimer's disease (AD) and related dementias. Previous studies in our lab and others have shown that chronic fragmentation of the daily sleep-wake rhythm in mice can accelerate the development of AD-related neuropathology in the brain, including increases in the levels of amyloid-β (Aβ). Although sleep is known to increase clearance of Aβ via the glymphatic system, little is known about the effect of sleep on Aβ production and the role this might play in amyloid deposition. To examine the relationship of Aβ production and its interaction with sleep and sleep dysfunction, we treated mice from an APP × PS1 mutant knock-in line (APPΔNLh/ΔNLh × PS1P264L/P264L) with an inhibitor of γ-secretase (LY-450,139; Semagacestat®) during a protocol of mild sleep fragmentation (SF). Compared to the male mice, the female mice slept less, and had more Aβ pathology. Semagacestat treatment reduced Aβ, but only in the most soluble extractable fraction. Although the female mice showed an increase in the amount of Aβ following SF, this effect was blocked by Semagacestat, an effect that was not seen in the male mice. SF also led to a significant, sex-dependent changes in the relative amounts of C-terminal fragments of the amyloid precursor protein, the immediate substrate of the γ-secretase enzyme. These findings indicate that the relationship between disruption of the daily sleep-wake rhythm and the development of AD-related pathology is complex, and may involve unappreciated interactions with biological sex. Consideration of these factors is necessary for a better understanding of AD risk, especially the elevated risk in women.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.30
自引率
0.00%
发文量
218
审稿时长
32 days
期刊介绍: BBA Molecular Basis of Disease addresses the biochemistry and molecular genetics of disease processes and models of human disease. This journal covers aspects of aging, cancer, metabolic-, neurological-, and immunological-based disease. Manuscripts focused on using animal models to elucidate biochemical and mechanistic insight in each of these conditions, are particularly encouraged. Manuscripts should emphasize the underlying mechanisms of disease pathways and provide novel contributions to the understanding and/or treatment of these disorders. Highly descriptive and method development submissions may be declined without full review. The submission of uninvited reviews to BBA - Molecular Basis of Disease is strongly discouraged, and any such uninvited review should be accompanied by a coverletter outlining the compelling reasons why the review should be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信