DSR-YOLO: A lightweight and efficient YOLOv8 model for enhanced pedestrian detection

Mustapha Oussouaddi , Omar Bouazizi , Aimad El mourabit , Zine el Abidine Alaoui Ismaili , Yassine Attaoui , Mohamed Chentouf
{"title":"DSR-YOLO: A lightweight and efficient YOLOv8 model for enhanced pedestrian detection","authors":"Mustapha Oussouaddi ,&nbsp;Omar Bouazizi ,&nbsp;Aimad El mourabit ,&nbsp;Zine el Abidine Alaoui Ismaili ,&nbsp;Yassine Attaoui ,&nbsp;Mohamed Chentouf","doi":"10.1016/j.cogr.2025.04.001","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents DSR-YOLO, a pedestrian detection network that addresses critical challenges, such as scale variations and complex backgrounds. Built on the lightweight YOLOv8n architecture, it incorporates DCNv4 modules to enhance the detection rates and reduce missed detections by effectively learning key pedestrian features. A new head component enables detection across various scales, whereas RFB modules improve accuracy for smaller or occluded objects. Additionally, we enhance the initial C2f layers with a modified block that integrates SimAM and DCNv4, minimizing the background noise and sharpening the focus on the relevant features. A second version of the C2f block using SimAM and standard convolutions ensures robust feature extraction in deeper layers with optimized computational efficiency. The WIoUv3 loss function was utilized to reduce the regression loss associated with bounding boxes, further boosting the performance. Evaluated on the CityPersons dataset, DSR-YOLO outperformed YOLOv8n with a 14.9 % increase in mAP@50 and 6.3 % increase in mAP@50:95, while maintaining competitive FLOPS, parameter counts, and inference speed.</div></div>","PeriodicalId":100288,"journal":{"name":"Cognitive Robotics","volume":"5 ","pages":"Pages 152-165"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Robotics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667241325000096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents DSR-YOLO, a pedestrian detection network that addresses critical challenges, such as scale variations and complex backgrounds. Built on the lightweight YOLOv8n architecture, it incorporates DCNv4 modules to enhance the detection rates and reduce missed detections by effectively learning key pedestrian features. A new head component enables detection across various scales, whereas RFB modules improve accuracy for smaller or occluded objects. Additionally, we enhance the initial C2f layers with a modified block that integrates SimAM and DCNv4, minimizing the background noise and sharpening the focus on the relevant features. A second version of the C2f block using SimAM and standard convolutions ensures robust feature extraction in deeper layers with optimized computational efficiency. The WIoUv3 loss function was utilized to reduce the regression loss associated with bounding boxes, further boosting the performance. Evaluated on the CityPersons dataset, DSR-YOLO outperformed YOLOv8n with a 14.9 % increase in mAP@50 and 6.3 % increase in mAP@50:95, while maintaining competitive FLOPS, parameter counts, and inference speed.
DSR-YOLO:一款轻量级高效的YOLOv8模型,用于增强行人检测
本文介绍了DSR-YOLO,这是一种行人检测网络,可解决规模变化和复杂背景等关键挑战。它基于轻量级的YOLOv8n架构,结合了DCNv4模块,通过有效地学习行人的关键特征,提高了检测率,减少了遗漏的检测。新的头部组件可实现各种尺度的检测,而RFB模块可提高较小或遮挡物体的精度。此外,我们使用集成了SimAM和DCNv4的修改块增强了初始C2f层,最大限度地减少了背景噪声并锐化了对相关特征的关注。第二个版本的C2f块使用了SimAM和标准卷积,确保了更深层的鲁棒特征提取,并优化了计算效率。利用WIoUv3损失函数减少了与边界盒相关的回归损失,进一步提高了性能。在CityPersons数据集上进行评估,DSR-YOLO在保持具有竞争力的FLOPS、参数数量和推理速度的同时,在mAP@50和mAP@50:95上分别提高了14.9%和6.3%,优于YOLOv8n。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信