Chenyu Zhao , Lisheng Deng , Shuang Wu , Weijie Wu , Yawei Peng , Xiaowei Wang , Yong Jiang , Jianming Gong
{"title":"Dual role of hydrogen in fatigue life of 316L austenitic stainless steel","authors":"Chenyu Zhao , Lisheng Deng , Shuang Wu , Weijie Wu , Yawei Peng , Xiaowei Wang , Yong Jiang , Jianming Gong","doi":"10.1016/j.ijfatigue.2025.108975","DOIUrl":null,"url":null,"abstract":"<div><div>The presence of hydrogen can significantly alter the fatigue behavior of materials, posing a serious threat to the safe and reliable operation of components. In this study, an electrochemical in-situ hydrogen charging fatigue testing method was used to examine the effect of hydrogen on the fatigue strength and lifetime of 316L austenitic stainless steel. The impact of hydrogen on fatigue fracture behavior was analyzed using scanning electron microscopy (SEM) and electron backscattered diffraction (EBSD). The results indicated that, compared to specimens tested in air, in-situ charging increases the fatigue lifetime at higher stress amplitudes but significantly reduces it at lower stress amplitudes. Regardless of the testing environment, the crack initiation lifetime constitutes the majority of the total fatigue lifetime. Notably, at higher stress amplitudes, hydrogen greatly extends the fatigue crack initiation lifetime, whereas, at lower stress amplitudes, it has the opposite effect. This is attributed to the influence of hydrogen on dislocation motion patterns, which lowers the critical stress for dislocation plane slip. Hydrogen plays a dual role in the fatigue behavior of 316L steel.</div></div>","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"198 ","pages":"Article 108975"},"PeriodicalIF":5.7000,"publicationDate":"2025-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fatigue","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142112325001720","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The presence of hydrogen can significantly alter the fatigue behavior of materials, posing a serious threat to the safe and reliable operation of components. In this study, an electrochemical in-situ hydrogen charging fatigue testing method was used to examine the effect of hydrogen on the fatigue strength and lifetime of 316L austenitic stainless steel. The impact of hydrogen on fatigue fracture behavior was analyzed using scanning electron microscopy (SEM) and electron backscattered diffraction (EBSD). The results indicated that, compared to specimens tested in air, in-situ charging increases the fatigue lifetime at higher stress amplitudes but significantly reduces it at lower stress amplitudes. Regardless of the testing environment, the crack initiation lifetime constitutes the majority of the total fatigue lifetime. Notably, at higher stress amplitudes, hydrogen greatly extends the fatigue crack initiation lifetime, whereas, at lower stress amplitudes, it has the opposite effect. This is attributed to the influence of hydrogen on dislocation motion patterns, which lowers the critical stress for dislocation plane slip. Hydrogen plays a dual role in the fatigue behavior of 316L steel.
期刊介绍:
Typical subjects discussed in International Journal of Fatigue address:
Novel fatigue testing and characterization methods (new kinds of fatigue tests, critical evaluation of existing methods, in situ measurement of fatigue degradation, non-contact field measurements)
Multiaxial fatigue and complex loading effects of materials and structures, exploring state-of-the-art concepts in degradation under cyclic loading
Fatigue in the very high cycle regime, including failure mode transitions from surface to subsurface, effects of surface treatment, processing, and loading conditions
Modeling (including degradation processes and related driving forces, multiscale/multi-resolution methods, computational hierarchical and concurrent methods for coupled component and material responses, novel methods for notch root analysis, fracture mechanics, damage mechanics, crack growth kinetics, life prediction and durability, and prediction of stochastic fatigue behavior reflecting microstructure and service conditions)
Models for early stages of fatigue crack formation and growth that explicitly consider microstructure and relevant materials science aspects
Understanding the influence or manufacturing and processing route on fatigue degradation, and embedding this understanding in more predictive schemes for mitigation and design against fatigue
Prognosis and damage state awareness (including sensors, monitoring, methodology, interactive control, accelerated methods, data interpretation)
Applications of technologies associated with fatigue and their implications for structural integrity and reliability. This includes issues related to design, operation and maintenance, i.e., life cycle engineering
Smart materials and structures that can sense and mitigate fatigue degradation
Fatigue of devices and structures at small scales, including effects of process route and surfaces/interfaces.