Explicit multiscale numerical method for super-linear slow-fast stochastic differential equations

IF 1.1 2区 数学 Q3 STATISTICS & PROBABILITY
Yuanping Cui , Xiaoyue Li , Xuerong Mao
{"title":"Explicit multiscale numerical method for super-linear slow-fast stochastic differential equations","authors":"Yuanping Cui ,&nbsp;Xiaoyue Li ,&nbsp;Xuerong Mao","doi":"10.1016/j.spa.2025.104653","DOIUrl":null,"url":null,"abstract":"<div><div>This manuscript is dedicated to the numerical approximation of super-linear slow-fast stochastic differential equations (SFSDEs). Borrowing the heterogeneous multiscale idea, we propose an explicit multiscale Euler–Maruyama scheme suitable for SFSDEs with locally Lipschitz coefficients using an appropriate truncation technique. By the averaging principle, we establish the strong convergence of the numerical solutions to the exact solutions in the <span><math><mi>p</mi></math></span>th moment. Additionally, under lenient conditions on the coefficients, we also furnish a strong error estimate. In conclusion, we give two illustrative examples and accompanying numerical simulations to affirm the theoretical outcomes.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"187 ","pages":"Article 104653"},"PeriodicalIF":1.1000,"publicationDate":"2025-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414925000948","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

This manuscript is dedicated to the numerical approximation of super-linear slow-fast stochastic differential equations (SFSDEs). Borrowing the heterogeneous multiscale idea, we propose an explicit multiscale Euler–Maruyama scheme suitable for SFSDEs with locally Lipschitz coefficients using an appropriate truncation technique. By the averaging principle, we establish the strong convergence of the numerical solutions to the exact solutions in the pth moment. Additionally, under lenient conditions on the coefficients, we also furnish a strong error estimate. In conclusion, we give two illustrative examples and accompanying numerical simulations to affirm the theoretical outcomes.
超线性慢速随机微分方程的显式多尺度数值方法
本文致力于研究超线性慢速随机微分方程(SFSDEs)的数值近似。利用异构多尺度思想,利用适当的截断技术,提出了一种适用于具有局部Lipschitz系数的SFSDEs的显式多尺度Euler-Maruyama格式。利用平均原理,建立了数值解对第p阶矩精确解的强收敛性。此外,在系数较宽松的条件下,我们也给出了一个强误差估计。最后,我们给出了两个实例和相应的数值模拟来验证理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Stochastic Processes and their Applications
Stochastic Processes and their Applications 数学-统计学与概率论
CiteScore
2.90
自引率
7.10%
发文量
180
审稿时长
23.6 weeks
期刊介绍: Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests. Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信