AI-driven EEG neuroscientific analysis for evaluating the influence of emotions on false memory

V. Mahalakshmi
{"title":"AI-driven EEG neuroscientific analysis for evaluating the influence of emotions on false memory","authors":"V. Mahalakshmi","doi":"10.1016/j.neuri.2025.100201","DOIUrl":null,"url":null,"abstract":"<div><div>Investigating the brain mechanisms behind memory processing depends on an awareness of how emotions influence false memory. This study used AI-driven EEG microstate analysis to investigate how emotions affect the generation of false memories from both a temporal and a geographic perspective. Within emotional groups, AI-augmented computational models showed distinct brain processing patterns, particularly during the recall processing stage. By altering cognitive processing dynamics, these results support the hypothesis that AI-enhanced brain activity analysis can effectively mimic the influence of emotional states on the formation of false memories. This work explores emotional implications on false memory by combining artificial intelligence (AI) with EEG-based microstate analysis, therefore offering greater understanding of brain dynamics at several cognitive phases. EEG data collected under various emotional states were analyzed using AI-powered techniques to enable exact extraction of microstate templates (Microstates 1–5) for every emotional group. Phase-locked value (AI-PLV) brain functional networks were built inside microstates displaying notable temporal coverage variations. Driven by artificial intelligence, temporal and geographical analysis of EEG signals revealed different brain processing mechanisms among emotional groupings. The group with pleasant emotions showed continuous activity in prefrontal Microstates 3 and 5, therefore suggesting improved cognitive processing. Reflecting a concentration on information integration, the neutral group showed extended involvement in central-active Microstates 3 and 4. These results emphasize how artificial intelligence is helping neuroscientific research to progress by offering a strong framework for comprehending AI-driven emotional-based aberrations in memory recall.</div></div>","PeriodicalId":74295,"journal":{"name":"Neuroscience informatics","volume":"5 2","pages":"Article 100201"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience informatics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772528625000160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Investigating the brain mechanisms behind memory processing depends on an awareness of how emotions influence false memory. This study used AI-driven EEG microstate analysis to investigate how emotions affect the generation of false memories from both a temporal and a geographic perspective. Within emotional groups, AI-augmented computational models showed distinct brain processing patterns, particularly during the recall processing stage. By altering cognitive processing dynamics, these results support the hypothesis that AI-enhanced brain activity analysis can effectively mimic the influence of emotional states on the formation of false memories. This work explores emotional implications on false memory by combining artificial intelligence (AI) with EEG-based microstate analysis, therefore offering greater understanding of brain dynamics at several cognitive phases. EEG data collected under various emotional states were analyzed using AI-powered techniques to enable exact extraction of microstate templates (Microstates 1–5) for every emotional group. Phase-locked value (AI-PLV) brain functional networks were built inside microstates displaying notable temporal coverage variations. Driven by artificial intelligence, temporal and geographical analysis of EEG signals revealed different brain processing mechanisms among emotional groupings. The group with pleasant emotions showed continuous activity in prefrontal Microstates 3 and 5, therefore suggesting improved cognitive processing. Reflecting a concentration on information integration, the neutral group showed extended involvement in central-active Microstates 3 and 4. These results emphasize how artificial intelligence is helping neuroscientific research to progress by offering a strong framework for comprehending AI-driven emotional-based aberrations in memory recall.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neuroscience informatics
Neuroscience informatics Surgery, Radiology and Imaging, Information Systems, Neurology, Artificial Intelligence, Computer Science Applications, Signal Processing, Critical Care and Intensive Care Medicine, Health Informatics, Clinical Neurology, Pathology and Medical Technology
自引率
0.00%
发文量
0
审稿时长
57 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信