Hong-Yao Wang , Chuan-Lu Yang , Xiaohu Li , Yuliang Liu , Wenkai Zhao , Feng Gao
{"title":"Two-dimensional Pt@g-C3N4/ReS2 Van Der Waals Heterostructure for photocatalytic hydrogen evolution with direct Z-scheme","authors":"Hong-Yao Wang , Chuan-Lu Yang , Xiaohu Li , Yuliang Liu , Wenkai Zhao , Feng Gao","doi":"10.1016/j.cplett.2025.142101","DOIUrl":null,"url":null,"abstract":"<div><div>To overcome the limitations of the Pt@g-C<sub>3</sub>N<sub>4</sub> monolayer in driving the oxygen evolution reaction (OER), we construct a photocatalytic <em>Z</em>-scheme with Pt@g-C<sub>3</sub>N<sub>4</sub>/ReS<sub>2</sub> heterojunction. Band edge arrangement satisfies the requirements for hydrogen evolution reaction (HER) and OER, with a solar-to‑hydrogen efficiency of 15.31 %. Nonadiabatic molecular dynamics simulation indicates that the reduction and oxidation activities of OER and HER can be efficiently protected. The Gibbs free energies indicate that the heterostructure can spontaneously drive HER, while OER requires a cocatalyst or sacrificial agent. These findings demonstrate the potential of Pt@g-C<sub>3</sub>N<sub>4</sub>/ReS<sub>2</sub> heterojunctions as promising candidates for photocatalytic water splitting applications.</div></div>","PeriodicalId":273,"journal":{"name":"Chemical Physics Letters","volume":"870 ","pages":"Article 142101"},"PeriodicalIF":2.8000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Letters","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009261425002416","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
To overcome the limitations of the Pt@g-C3N4 monolayer in driving the oxygen evolution reaction (OER), we construct a photocatalytic Z-scheme with Pt@g-C3N4/ReS2 heterojunction. Band edge arrangement satisfies the requirements for hydrogen evolution reaction (HER) and OER, with a solar-to‑hydrogen efficiency of 15.31 %. Nonadiabatic molecular dynamics simulation indicates that the reduction and oxidation activities of OER and HER can be efficiently protected. The Gibbs free energies indicate that the heterostructure can spontaneously drive HER, while OER requires a cocatalyst or sacrificial agent. These findings demonstrate the potential of Pt@g-C3N4/ReS2 heterojunctions as promising candidates for photocatalytic water splitting applications.
期刊介绍:
Chemical Physics Letters has an open access mirror journal, Chemical Physics Letters: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Chemical Physics Letters publishes brief reports on molecules, interfaces, condensed phases, nanomaterials and nanostructures, polymers, biomolecular systems, and energy conversion and storage.
Criteria for publication are quality, urgency and impact. Further, experimental results reported in the journal have direct relevance for theory, and theoretical developments or non-routine computations relate directly to experiment. Manuscripts must satisfy these criteria and should not be minor extensions of previous work.