Navigating challenges/opportunities in developing smart agricultural extension platforms: Multi-media data mining techniques

IF 8.2 Q1 AGRICULTURE, MULTIDISCIPLINARY
Josué Kpodo , A. Pouyan Nejadhashemi
{"title":"Navigating challenges/opportunities in developing smart agricultural extension platforms: Multi-media data mining techniques","authors":"Josué Kpodo ,&nbsp;A. Pouyan Nejadhashemi","doi":"10.1016/j.aiia.2025.04.001","DOIUrl":null,"url":null,"abstract":"<div><div>Agricultural Extension (AE) research faces significant challenges in producing relevant and practical knowledge due to rapid advancements in artificial intelligence (AI). AE struggles to keep pace with these advancements, complicating the development of actionable information. One major challenge is the absence of intelligent platforms that enable efficient information retrieval and quick decision-making. Investigations have shown a shortage of AI-assisted solutions that effectively use AE materials across various media formats while preserving scientific accuracy and contextual relevance. Although mainstream AI systems can potentially reduce decision-making risks, their usage remains limited. This limitation arises primarily from the lack of standardized datasets and concerns regarding user data privacy. For AE datasets to be standardized, they must satisfy four key criteria: inclusion of critical domain-specific knowledge, expert curation, consistent structure, and acceptance by peers. Addressing data privacy issues involves adhering to open-access principles and enforcing strict data encryption and anonymization standards. To address these gaps, a conceptual framework is introduced. This framework extends beyond typical user-oriented platforms and comprises five core modules. It features a neurosymbolic pipeline integrating large language models with physically based agricultural modeling software, further enhanced by Reinforcement Learning from Human Feedback. Notable aspects of the framework include a dedicated human-in-the-loop process and a governance structure consisting of three primary bodies focused on data standardization, ethics and security, and accountability and transparency. Overall, this work represents a significant advancement in agricultural knowledge systems, potentially transforming how AE services deliver critical information to farmers and other stakeholders.</div></div>","PeriodicalId":52814,"journal":{"name":"Artificial Intelligence in Agriculture","volume":"15 3","pages":"Pages 426-448"},"PeriodicalIF":8.2000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Agriculture","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589721725000418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Agricultural Extension (AE) research faces significant challenges in producing relevant and practical knowledge due to rapid advancements in artificial intelligence (AI). AE struggles to keep pace with these advancements, complicating the development of actionable information. One major challenge is the absence of intelligent platforms that enable efficient information retrieval and quick decision-making. Investigations have shown a shortage of AI-assisted solutions that effectively use AE materials across various media formats while preserving scientific accuracy and contextual relevance. Although mainstream AI systems can potentially reduce decision-making risks, their usage remains limited. This limitation arises primarily from the lack of standardized datasets and concerns regarding user data privacy. For AE datasets to be standardized, they must satisfy four key criteria: inclusion of critical domain-specific knowledge, expert curation, consistent structure, and acceptance by peers. Addressing data privacy issues involves adhering to open-access principles and enforcing strict data encryption and anonymization standards. To address these gaps, a conceptual framework is introduced. This framework extends beyond typical user-oriented platforms and comprises five core modules. It features a neurosymbolic pipeline integrating large language models with physically based agricultural modeling software, further enhanced by Reinforcement Learning from Human Feedback. Notable aspects of the framework include a dedicated human-in-the-loop process and a governance structure consisting of three primary bodies focused on data standardization, ethics and security, and accountability and transparency. Overall, this work represents a significant advancement in agricultural knowledge systems, potentially transforming how AE services deliver critical information to farmers and other stakeholders.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Artificial Intelligence in Agriculture
Artificial Intelligence in Agriculture Engineering-Engineering (miscellaneous)
CiteScore
21.60
自引率
0.00%
发文量
18
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信