{"title":"Navigating challenges/opportunities in developing smart agricultural extension platforms: Multi-media data mining techniques","authors":"Josué Kpodo , A. Pouyan Nejadhashemi","doi":"10.1016/j.aiia.2025.04.001","DOIUrl":null,"url":null,"abstract":"<div><div>Agricultural Extension (AE) research faces significant challenges in producing relevant and practical knowledge due to rapid advancements in artificial intelligence (AI). AE struggles to keep pace with these advancements, complicating the development of actionable information. One major challenge is the absence of intelligent platforms that enable efficient information retrieval and quick decision-making. Investigations have shown a shortage of AI-assisted solutions that effectively use AE materials across various media formats while preserving scientific accuracy and contextual relevance. Although mainstream AI systems can potentially reduce decision-making risks, their usage remains limited. This limitation arises primarily from the lack of standardized datasets and concerns regarding user data privacy. For AE datasets to be standardized, they must satisfy four key criteria: inclusion of critical domain-specific knowledge, expert curation, consistent structure, and acceptance by peers. Addressing data privacy issues involves adhering to open-access principles and enforcing strict data encryption and anonymization standards. To address these gaps, a conceptual framework is introduced. This framework extends beyond typical user-oriented platforms and comprises five core modules. It features a neurosymbolic pipeline integrating large language models with physically based agricultural modeling software, further enhanced by Reinforcement Learning from Human Feedback. Notable aspects of the framework include a dedicated human-in-the-loop process and a governance structure consisting of three primary bodies focused on data standardization, ethics and security, and accountability and transparency. Overall, this work represents a significant advancement in agricultural knowledge systems, potentially transforming how AE services deliver critical information to farmers and other stakeholders.</div></div>","PeriodicalId":52814,"journal":{"name":"Artificial Intelligence in Agriculture","volume":"15 3","pages":"Pages 426-448"},"PeriodicalIF":8.2000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Agriculture","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589721725000418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Agricultural Extension (AE) research faces significant challenges in producing relevant and practical knowledge due to rapid advancements in artificial intelligence (AI). AE struggles to keep pace with these advancements, complicating the development of actionable information. One major challenge is the absence of intelligent platforms that enable efficient information retrieval and quick decision-making. Investigations have shown a shortage of AI-assisted solutions that effectively use AE materials across various media formats while preserving scientific accuracy and contextual relevance. Although mainstream AI systems can potentially reduce decision-making risks, their usage remains limited. This limitation arises primarily from the lack of standardized datasets and concerns regarding user data privacy. For AE datasets to be standardized, they must satisfy four key criteria: inclusion of critical domain-specific knowledge, expert curation, consistent structure, and acceptance by peers. Addressing data privacy issues involves adhering to open-access principles and enforcing strict data encryption and anonymization standards. To address these gaps, a conceptual framework is introduced. This framework extends beyond typical user-oriented platforms and comprises five core modules. It features a neurosymbolic pipeline integrating large language models with physically based agricultural modeling software, further enhanced by Reinforcement Learning from Human Feedback. Notable aspects of the framework include a dedicated human-in-the-loop process and a governance structure consisting of three primary bodies focused on data standardization, ethics and security, and accountability and transparency. Overall, this work represents a significant advancement in agricultural knowledge systems, potentially transforming how AE services deliver critical information to farmers and other stakeholders.