Alexander Olek Pisera, Yutong Yu, Rory L. Williams and Chang C. Liu*,
{"title":"Ultra-efficient Integration of Gene Libraries onto Yeast Cytosolic Plasmids","authors":"Alexander Olek Pisera, Yutong Yu, Rory L. Williams and Chang C. Liu*, ","doi":"10.1021/acssynbio.4c0078610.1021/acssynbio.4c00786","DOIUrl":null,"url":null,"abstract":"<p >Efficient methods for diversifying genes of interest (GOIs) are essential in protein engineering. For example, OrthoRep, a yeast-based orthogonal DNA replication system that achieves the rapid <i>in vivo</i> diversification of GOIs encoded on a cytosolic plasmid (p1), has been successfully used to drive numerous protein engineering campaigns. However, OrthoRep-based GOI evolution has almost always started from single GOI sequences, limiting the number of locations on a fitness landscape from where evolutionary search begins. Here, we present a simple approach for the high-efficiency integration of GOI libraries onto OrthoRep. By leveraging integrases, we demonstrate recombination of donor DNA onto the cytosolic p1 plasmid at exceptionally high transformation efficiencies, even surpassing the transformation efficiency of standard circular plasmids and linearized plasmid fragments into yeast. We demonstrate our method’s utility through the straightforward construction of mock nanobody libraries encoded on OrthoRep, from which rare binders were reliably enriched. Overall, integrase-assisted manipulation of yeast cytosolic plasmids should enhance the versatility of OrthoRep in continuous evolution experiments and support the routine construction of large GOI libraries in yeast, in general.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":"14 4","pages":"1002–1008 1002–1008"},"PeriodicalIF":3.7000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssynbio.4c00786","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Efficient methods for diversifying genes of interest (GOIs) are essential in protein engineering. For example, OrthoRep, a yeast-based orthogonal DNA replication system that achieves the rapid in vivo diversification of GOIs encoded on a cytosolic plasmid (p1), has been successfully used to drive numerous protein engineering campaigns. However, OrthoRep-based GOI evolution has almost always started from single GOI sequences, limiting the number of locations on a fitness landscape from where evolutionary search begins. Here, we present a simple approach for the high-efficiency integration of GOI libraries onto OrthoRep. By leveraging integrases, we demonstrate recombination of donor DNA onto the cytosolic p1 plasmid at exceptionally high transformation efficiencies, even surpassing the transformation efficiency of standard circular plasmids and linearized plasmid fragments into yeast. We demonstrate our method’s utility through the straightforward construction of mock nanobody libraries encoded on OrthoRep, from which rare binders were reliably enriched. Overall, integrase-assisted manipulation of yeast cytosolic plasmids should enhance the versatility of OrthoRep in continuous evolution experiments and support the routine construction of large GOI libraries in yeast, in general.
期刊介绍:
The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism.
Topics may include, but are not limited to:
Design and optimization of genetic systems
Genetic circuit design and their principles for their organization into programs
Computational methods to aid the design of genetic systems
Experimental methods to quantify genetic parts, circuits, and metabolic fluxes
Genetic parts libraries: their creation, analysis, and ontological representation
Protein engineering including computational design
Metabolic engineering and cellular manufacturing, including biomass conversion
Natural product access, engineering, and production
Creative and innovative applications of cellular programming
Medical applications, tissue engineering, and the programming of therapeutic cells
Minimal cell design and construction
Genomics and genome replacement strategies
Viral engineering
Automated and robotic assembly platforms for synthetic biology
DNA synthesis methodologies
Metagenomics and synthetic metagenomic analysis
Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction
Gene optimization
Methods for genome-scale measurements of transcription and metabolomics
Systems biology and methods to integrate multiple data sources
in vitro and cell-free synthetic biology and molecular programming
Nucleic acid engineering.