Concentration-Dependent CsrA Regulation of the uxuB Transcript Leads to Development of a Post-Transcriptional Bandpass Filter

IF 3.7 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Alejandra M. Rojano-Nisimura, Trevor R. Simmons, Alexandra J. Lukasiewicz, Ryan Buchser, Josie S. Ruzek, Jacqueline L. Avila and Lydia M. Contreras*, 
{"title":"Concentration-Dependent CsrA Regulation of the uxuB Transcript Leads to Development of a Post-Transcriptional Bandpass Filter","authors":"Alejandra M. Rojano-Nisimura,&nbsp;Trevor R. Simmons,&nbsp;Alexandra J. Lukasiewicz,&nbsp;Ryan Buchser,&nbsp;Josie S. Ruzek,&nbsp;Jacqueline L. Avila and Lydia M. Contreras*,&nbsp;","doi":"10.1021/acssynbio.4c0066810.1021/acssynbio.4c00668","DOIUrl":null,"url":null,"abstract":"<p >Post-transcriptional control systems offer new avenues for designing synthetic circuits that provide reduced burden and fewer synthetic regulatory components compared to transcriptionally based tools. Herein, we repurpose a newly identified post-transcriptional interaction between the <i>uxuB</i> mRNA transcript, specifically the 5’ UTR + 100 nucleotides of coding sequence (100 nt CDS), and the <i>E. coli</i> Carbon Storage Regulatory A (CsrA) protein to design a biological post-transcriptional bandpass filter. In this work, we characterize <i>the uxuB</i> mRNA as a heterogeneous target of CsrA, where the protein can both activate and repress <i>uxuB</i> activity depending on its intracellular concentration. We leverage this interaction to implement a novel strategy of regulation within the 5’ UTR of an mRNA. Specifically, we report a hierarchical binding strategy that may be leveraged by CsrA within <i>uxuB</i> to produce a dose-dependent response in regulatory outcomes. In our semisynthetic circuit, the <i>uxuB</i> 5’ UTR + 100 nt CDS sequence is used as a scaffold that is fused to a gene of interest, which allows the circuit to transition between ON/OFF states based on the concentration range of free natively expressed CsrA. Notably, this system exerts regulation comparable to previously developed transcriptional bandpass filters while reducing the number of synthetic circuit components and can be used in concert with additional post-transcriptionally controlled circuits to achieve complex multi-signal control. We anticipate that future characterization of native regulatory RNA-protein systems will enable the development of more complex RNP-based circuits for synthetic biology applications.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":"14 4","pages":"1084–1098 1084–1098"},"PeriodicalIF":3.7000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssynbio.4c00668","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Post-transcriptional control systems offer new avenues for designing synthetic circuits that provide reduced burden and fewer synthetic regulatory components compared to transcriptionally based tools. Herein, we repurpose a newly identified post-transcriptional interaction between the uxuB mRNA transcript, specifically the 5’ UTR + 100 nucleotides of coding sequence (100 nt CDS), and the E. coli Carbon Storage Regulatory A (CsrA) protein to design a biological post-transcriptional bandpass filter. In this work, we characterize the uxuB mRNA as a heterogeneous target of CsrA, where the protein can both activate and repress uxuB activity depending on its intracellular concentration. We leverage this interaction to implement a novel strategy of regulation within the 5’ UTR of an mRNA. Specifically, we report a hierarchical binding strategy that may be leveraged by CsrA within uxuB to produce a dose-dependent response in regulatory outcomes. In our semisynthetic circuit, the uxuB 5’ UTR + 100 nt CDS sequence is used as a scaffold that is fused to a gene of interest, which allows the circuit to transition between ON/OFF states based on the concentration range of free natively expressed CsrA. Notably, this system exerts regulation comparable to previously developed transcriptional bandpass filters while reducing the number of synthetic circuit components and can be used in concert with additional post-transcriptionally controlled circuits to achieve complex multi-signal control. We anticipate that future characterization of native regulatory RNA-protein systems will enable the development of more complex RNP-based circuits for synthetic biology applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
10.60%
发文量
380
审稿时长
6-12 weeks
期刊介绍: The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism. Topics may include, but are not limited to: Design and optimization of genetic systems Genetic circuit design and their principles for their organization into programs Computational methods to aid the design of genetic systems Experimental methods to quantify genetic parts, circuits, and metabolic fluxes Genetic parts libraries: their creation, analysis, and ontological representation Protein engineering including computational design Metabolic engineering and cellular manufacturing, including biomass conversion Natural product access, engineering, and production Creative and innovative applications of cellular programming Medical applications, tissue engineering, and the programming of therapeutic cells Minimal cell design and construction Genomics and genome replacement strategies Viral engineering Automated and robotic assembly platforms for synthetic biology DNA synthesis methodologies Metagenomics and synthetic metagenomic analysis Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction Gene optimization Methods for genome-scale measurements of transcription and metabolomics Systems biology and methods to integrate multiple data sources in vitro and cell-free synthetic biology and molecular programming Nucleic acid engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信