{"title":"Effect of microstructural damage evolution on tensile strength of ultra-high performance concrete: A multiscale numerical scheme","authors":"Yanmo Weng, Pizhong Qiao, Lizhi Sun","doi":"10.1177/10567895251329950","DOIUrl":null,"url":null,"abstract":"This study aims to investigate the tensile behavior of ultra-high performance concrete (UHPC) using a multiscale modeling approach. A micromechanics-based finite-element method is employed to investigate the evolution of microstructural damage and its effect on the macroscopic tensile strength of UHPC. X-ray computed tomography (CT) techniques are used to create a realistic microstructural geometry, and the cohesive-zone models are adopted to quantify the microcrack growth rate and the overall mechanical properties of UHPC under tension. A stiffness-degradation parameter is introduced to explain the evolution of the material tensile behavior. Satisfactory agreements are achieved between the simulation results and the experimental data from the direct tensile tests. To demonstrate the capability of the proposed multiscale modeling framework, the influences of curing age and freeze–thaw cycles of UHPC materials are further taken into account. The proposed multiscale simulation scheme integrated with the x-ray CT techniques and cohesive-zone model can serve as an effective and reliable method to capture the nonlinear tensile responses of UHPC materials and structures.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"122 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Damage Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10567895251329950","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to investigate the tensile behavior of ultra-high performance concrete (UHPC) using a multiscale modeling approach. A micromechanics-based finite-element method is employed to investigate the evolution of microstructural damage and its effect on the macroscopic tensile strength of UHPC. X-ray computed tomography (CT) techniques are used to create a realistic microstructural geometry, and the cohesive-zone models are adopted to quantify the microcrack growth rate and the overall mechanical properties of UHPC under tension. A stiffness-degradation parameter is introduced to explain the evolution of the material tensile behavior. Satisfactory agreements are achieved between the simulation results and the experimental data from the direct tensile tests. To demonstrate the capability of the proposed multiscale modeling framework, the influences of curing age and freeze–thaw cycles of UHPC materials are further taken into account. The proposed multiscale simulation scheme integrated with the x-ray CT techniques and cohesive-zone model can serve as an effective and reliable method to capture the nonlinear tensile responses of UHPC materials and structures.
期刊介绍:
Featuring original, peer-reviewed papers by leading specialists from around the world, the International Journal of Damage Mechanics covers new developments in the science and engineering of fracture and damage mechanics.
Devoted to the prompt publication of original papers reporting the results of experimental or theoretical work on any aspect of research in the mechanics of fracture and damage assessment, the journal provides an effective mechanism to disseminate information not only within the research community but also between the reseach laboratory and industrial design department.
The journal also promotes and contributes to development of the concept of damage mechanics. This journal is a member of the Committee on Publication Ethics (COPE).