{"title":"DNA methylation dynamics play crucial roles in shaping the distinct transcriptomic profiles for different root-type initiation in rice","authors":"Wei Jiang, Zhou Zhou, Xiaoying Li, Yu Zhao, Shaoli Zhou","doi":"10.1186/s13059-025-03571-0","DOIUrl":null,"url":null,"abstract":"Monocots possess a fibrous root system comprising an embryonic root, crown roots, and lateral roots. The distinct cellular origins highlight the diversity of the initiation mechanism. To date, the distinct initiation mechanisms have been poorly studied. In this study, we conduct a comprehensive transcriptome and DNA methylome assay of these root types during their initiation. Our findings indicate significant divergence in transcriptome regulation trajectories with apparent transcriptional activation in post-embryonic root initials (crown root and lateral root) contrasted by suppression in embryonic root generation. Additionally, CHH methylation is dynamically and differentially regulated across the initiation stages of the various root types, and is significantly associated with the short transposon element within the promoter regions of functional genes, which plays crucial roles in determining the genes’ spatiotemporal transcription. Moreover, our work reveals that the activation of DNA glycosylase 702 (DNG702) and repression of Domains Rearranged Methyltransferase 2 (DRM2) play important roles in the erasure of CHH methylation and activation of functional genes during the processes, such as a novel identified key regulatory bZip65, thus directly impacting the initiation of post-embryonic roots in rice. Our extensive analysis delineates the landscapes of spatiotemporal transcriptomes and DNA methylomes during the initiation of the three root types in rice, shedding light on the pivotal role of CHH methylation in the spatiotemporal regulation of various key genes, ensuring the successful initiation of distinct root types in rice.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"30 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03571-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Monocots possess a fibrous root system comprising an embryonic root, crown roots, and lateral roots. The distinct cellular origins highlight the diversity of the initiation mechanism. To date, the distinct initiation mechanisms have been poorly studied. In this study, we conduct a comprehensive transcriptome and DNA methylome assay of these root types during their initiation. Our findings indicate significant divergence in transcriptome regulation trajectories with apparent transcriptional activation in post-embryonic root initials (crown root and lateral root) contrasted by suppression in embryonic root generation. Additionally, CHH methylation is dynamically and differentially regulated across the initiation stages of the various root types, and is significantly associated with the short transposon element within the promoter regions of functional genes, which plays crucial roles in determining the genes’ spatiotemporal transcription. Moreover, our work reveals that the activation of DNA glycosylase 702 (DNG702) and repression of Domains Rearranged Methyltransferase 2 (DRM2) play important roles in the erasure of CHH methylation and activation of functional genes during the processes, such as a novel identified key regulatory bZip65, thus directly impacting the initiation of post-embryonic roots in rice. Our extensive analysis delineates the landscapes of spatiotemporal transcriptomes and DNA methylomes during the initiation of the three root types in rice, shedding light on the pivotal role of CHH methylation in the spatiotemporal regulation of various key genes, ensuring the successful initiation of distinct root types in rice.
Genome BiologyBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍:
Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens.
With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category.
Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.