Electrochemical Detection of Miltefosine in Urine Using Amino Functionalised Multi-walled Carbon Nanotubes and [Fe(CN)6]−3/−4 as a Redox Couple

IF 2.7 4区 化学 Q3 CHEMISTRY, PHYSICAL
Darko Kwabena Adu, Zondi Nate, John Alake, Blessing Wisdom Ike, Lungelo Miya, Sachin Balaso Mohite, Ruchika Chauhan, Rajshekhar Karpoormath
{"title":"Electrochemical Detection of Miltefosine in Urine Using Amino Functionalised Multi-walled Carbon Nanotubes and [Fe(CN)6]−3/−4 as a Redox Couple","authors":"Darko Kwabena Adu,&nbsp;Zondi Nate,&nbsp;John Alake,&nbsp;Blessing Wisdom Ike,&nbsp;Lungelo Miya,&nbsp;Sachin Balaso Mohite,&nbsp;Ruchika Chauhan,&nbsp;Rajshekhar Karpoormath","doi":"10.1007/s12678-025-00928-8","DOIUrl":null,"url":null,"abstract":"<div><p>Miltefosine is an alkyllylosophospholipid analogue used to treat visceral leishmaniasis. Recently, reports have been made of suspected counterfeit miltefosine on the Indian market. With the risk counterfeit drugs pose to drug resistance development, quality control of antileishmanial drugs has become important. Hence, in this study, amino-functionalized multi-walled carbon nanotubes (MWCNT-NH<sub>2</sub>) were synthesised and characterised using Fourier transform infrared spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. Also, electrochemical impedance spectroscopy and cyclic voltammetry were used to study the electrochemical properties of the synthesised MWCNT-NH<sub>2</sub>. A complex was formed between MWCNT-NH<sub>2</sub> and miltefosine (Mil-MWCNT-NH<sub>2</sub>). Five microliters of Mil-MWCNT-NH<sub>2</sub> was drop-cast on glassy carbon electrode, and differential pulse voltammetry studies were carried out to assess the performance of the sensor. Using [Fe(CN)<sub>6</sub>]<sup>-3/-4</sup> as a redox couple, a calibration study was carried out at different concentrations (0–250 µM) to establish the concentration range of the sensor. A linear response was established. With a detection limit of 1 µM, the fabricated sensor is a viable tool for detecting antileishmanial drug miltefosine in urine samples and possible application in quality control of miltefosine against counterfeiting.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":"16 3","pages":"440 - 450"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12678-025-00928-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrocatalysis","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s12678-025-00928-8","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Miltefosine is an alkyllylosophospholipid analogue used to treat visceral leishmaniasis. Recently, reports have been made of suspected counterfeit miltefosine on the Indian market. With the risk counterfeit drugs pose to drug resistance development, quality control of antileishmanial drugs has become important. Hence, in this study, amino-functionalized multi-walled carbon nanotubes (MWCNT-NH2) were synthesised and characterised using Fourier transform infrared spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. Also, electrochemical impedance spectroscopy and cyclic voltammetry were used to study the electrochemical properties of the synthesised MWCNT-NH2. A complex was formed between MWCNT-NH2 and miltefosine (Mil-MWCNT-NH2). Five microliters of Mil-MWCNT-NH2 was drop-cast on glassy carbon electrode, and differential pulse voltammetry studies were carried out to assess the performance of the sensor. Using [Fe(CN)6]-3/-4 as a redox couple, a calibration study was carried out at different concentrations (0–250 µM) to establish the concentration range of the sensor. A linear response was established. With a detection limit of 1 µM, the fabricated sensor is a viable tool for detecting antileishmanial drug miltefosine in urine samples and possible application in quality control of miltefosine against counterfeiting.

Graphical Abstract

氨基功能化多壁碳纳米管和[Fe(CN)6]−3/−4作为氧化还原偶联电化学检测尿中米替福辛
米替福辛是一种用于治疗内脏利什曼病的烷基磷脂类似物。最近,印度市场上出现了疑似假冒米替福辛的报道。随着假药给耐药发展带来的风险,抗利什曼药物的质量控制变得越来越重要。因此,本研究合成了氨基功能化多壁碳纳米管(MWCNT-NH2),并利用傅里叶变换红外光谱、扫描电子显微镜和能量色散x射线光谱对其进行了表征。利用电化学阻抗谱和循环伏安法对合成的MWCNT-NH2的电化学性能进行了研究。MWCNT-NH2和miltefosine (Mil-MWCNT-NH2)之间形成络合物。将5微升Mil-MWCNT-NH2滴铸在玻碳电极上,并进行差分脉冲伏安法研究以评估传感器的性能。以[Fe(CN)6]-3/-4为氧化还原偶对,在不同浓度(0 ~ 250µM)下进行标定研究,建立传感器的浓度范围。建立了线性响应。该传感器的检出限为1µM,是检测尿样中抗利什曼病药物米特福辛的可行工具,并可能应用于米特福辛的防伪质量控制。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electrocatalysis
Electrocatalysis CHEMISTRY, PHYSICAL-ELECTROCHEMISTRY
CiteScore
4.80
自引率
6.50%
发文量
93
审稿时长
>12 weeks
期刊介绍: Electrocatalysis is cross-disciplinary in nature, and attracts the interest of chemists, physicists, biochemists, surface and materials scientists, and engineers. Electrocatalysis provides the unique international forum solely dedicated to the exchange of novel ideas in electrocatalysis for academic, government, and industrial researchers. Quick publication of new results, concepts, and inventions made involving Electrocatalysis stimulates scientific discoveries and breakthroughs, promotes the scientific and engineering concepts that are critical to the development of novel electrochemical technologies. Electrocatalysis publishes original submissions in the form of letters, research papers, review articles, book reviews, and educational papers. Letters are preliminary reports that communicate new and important findings. Regular research papers are complete reports of new results, and their analysis and discussion. Review articles critically and constructively examine development in areas of electrocatalysis that are of broad interest and importance. Educational papers discuss important concepts whose understanding is vital to advances in theoretical and experimental aspects of electrochemical reactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信