Non-enzymatic Electrochemical Sensing of Glyphosate Pesticide Using Nickel-Based Metal–Organic Framework

IF 2.7 4区 化学 Q3 CHEMISTRY, PHYSICAL
Ravi Patel, Ragini Gupta, Himmat Singh Kushwaha
{"title":"Non-enzymatic Electrochemical Sensing of Glyphosate Pesticide Using Nickel-Based Metal–Organic Framework","authors":"Ravi Patel,&nbsp;Ragini Gupta,&nbsp;Himmat Singh Kushwaha","doi":"10.1007/s12678-024-00923-5","DOIUrl":null,"url":null,"abstract":"<div><p>Pesticide (glyphosate) monitoring has become a focal point of concern as the unregulated application of pesticides puts both human health and the ecosystem at serious risk. Effective tracking of glyphosate levels is essential to mitigate its adverse effects and ensure the safety of the ecosystem and the human population. This study develops a novel electrochemical (EC) sensor using a nickel-metal organic framework (Ni-MOF) modified electrode to detect ultra-low concentrations of glyphosate pesticide. A one-pot solvothermal approach to synthesize Ni-MOF and a one-step sensor fabrication approach were adopted to modify the electrode surface of an electrochemical sensor. The Ni-MOF material coating on the working electrode surface increases the electrode’s electroactive surface area, promotes electron transport between the electrodes, and demonstrates selectivity and sensitivity towards glyphosate. This electrochemical sensor has a detection limit of 1.9 parts per billion (ppb) or 0.0113 nM, over an extensive concentration range of 0.166–0.666 µM/L. Further, the proposed sensor exhibits excellent stability and reproducibility with a standard deviation of around 2.8% in relative peak current. It shows excellent selectivity against various interfering substances with approximately ≤ 5% change in the current response. Finally, to showcase its practical applicability, the sensor was assessed by a glyphosate-spiked real sample.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":"16 3","pages":"404 - 413"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrocatalysis","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s12678-024-00923-5","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Pesticide (glyphosate) monitoring has become a focal point of concern as the unregulated application of pesticides puts both human health and the ecosystem at serious risk. Effective tracking of glyphosate levels is essential to mitigate its adverse effects and ensure the safety of the ecosystem and the human population. This study develops a novel electrochemical (EC) sensor using a nickel-metal organic framework (Ni-MOF) modified electrode to detect ultra-low concentrations of glyphosate pesticide. A one-pot solvothermal approach to synthesize Ni-MOF and a one-step sensor fabrication approach were adopted to modify the electrode surface of an electrochemical sensor. The Ni-MOF material coating on the working electrode surface increases the electrode’s electroactive surface area, promotes electron transport between the electrodes, and demonstrates selectivity and sensitivity towards glyphosate. This electrochemical sensor has a detection limit of 1.9 parts per billion (ppb) or 0.0113 nM, over an extensive concentration range of 0.166–0.666 µM/L. Further, the proposed sensor exhibits excellent stability and reproducibility with a standard deviation of around 2.8% in relative peak current. It shows excellent selectivity against various interfering substances with approximately ≤ 5% change in the current response. Finally, to showcase its practical applicability, the sensor was assessed by a glyphosate-spiked real sample.

Graphical Abstract

基于镍基金属-有机框架的草甘膦农药非酶电化学传感
农药(草甘膦)监测已成为人们关注的焦点,因为农药的无管制使用使人类健康和生态系统面临严重风险。有效跟踪草甘膦水平对于减轻其不利影响并确保生态系统和人类的安全至关重要。本研究利用镍金属有机框架(Ni-MOF)修饰电极开发了一种新型的电化学(EC)传感器,用于检测超低浓度草甘膦农药。采用一锅溶剂热法合成Ni-MOF,采用一步法制备传感器,对电化学传感器的电极表面进行修饰。在工作电极表面涂覆Ni-MOF材料,增加了电极的电活性表面积,促进了电极之间的电子传递,并表现出对草甘膦的选择性和敏感性。该电化学传感器的检测限为十亿分之1.9 (ppb)或0.0113 nM,浓度范围为0.166-0.666 μ M/L。此外,该传感器具有优异的稳定性和重复性,相对峰值电流的标准偏差约为2.8%。它对各种干扰物质具有优异的选择性,电流响应变化约≤5%。最后,为了展示其实用性,该传感器通过草甘膦添加的真实样品进行了评估。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electrocatalysis
Electrocatalysis CHEMISTRY, PHYSICAL-ELECTROCHEMISTRY
CiteScore
4.80
自引率
6.50%
发文量
93
审稿时长
>12 weeks
期刊介绍: Electrocatalysis is cross-disciplinary in nature, and attracts the interest of chemists, physicists, biochemists, surface and materials scientists, and engineers. Electrocatalysis provides the unique international forum solely dedicated to the exchange of novel ideas in electrocatalysis for academic, government, and industrial researchers. Quick publication of new results, concepts, and inventions made involving Electrocatalysis stimulates scientific discoveries and breakthroughs, promotes the scientific and engineering concepts that are critical to the development of novel electrochemical technologies. Electrocatalysis publishes original submissions in the form of letters, research papers, review articles, book reviews, and educational papers. Letters are preliminary reports that communicate new and important findings. Regular research papers are complete reports of new results, and their analysis and discussion. Review articles critically and constructively examine development in areas of electrocatalysis that are of broad interest and importance. Educational papers discuss important concepts whose understanding is vital to advances in theoretical and experimental aspects of electrochemical reactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信