Maurice Tiotsop, Soh Fongang Donald Bradonne, Alain Jervé Fotue
{"title":"Thermodynamic properties of a delta quantum dot under an electromagnetic field: the Nikiforov-Uvarova approach","authors":"Maurice Tiotsop, Soh Fongang Donald Bradonne, Alain Jervé Fotue","doi":"10.1007/s12648-024-03467-y","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we explore the thermodynamic aspects of a delta quantum dot (ΔQD) under the influence of electric and magnetic fields. By applying the Nikiforov-Uvarov approach, we derive essential thermodynamic parameters of the system, including its free energy, entropy, heat capacity, and magnetization. Understanding these properties is vital for grasping quantum dot nanostructures' dynamics and intrinsic qualities subjected to external field forces. We present detailed results and thorough discussions of the derived thermodynamic parameters, revealing their dependence on temperature and magnetic field strength. The results show a pseudo-harmonic pattern in the entropy of a delta quantum dot system, indicating distinct regimes, potential phase transitions, and their involvement in quantum coherence. Our findings shed light on the intricate interplay between electric and magnetic fields, providing valuable insights into the thermodynamic behavior of ΔQDs. This study contributes to the broader understanding of quantum dots and their potential applications in future technological advancements.</p></div>","PeriodicalId":584,"journal":{"name":"Indian Journal of Physics","volume":"99 5","pages":"1815 - 1824"},"PeriodicalIF":1.6000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s12648-024-03467-y","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we explore the thermodynamic aspects of a delta quantum dot (ΔQD) under the influence of electric and magnetic fields. By applying the Nikiforov-Uvarov approach, we derive essential thermodynamic parameters of the system, including its free energy, entropy, heat capacity, and magnetization. Understanding these properties is vital for grasping quantum dot nanostructures' dynamics and intrinsic qualities subjected to external field forces. We present detailed results and thorough discussions of the derived thermodynamic parameters, revealing their dependence on temperature and magnetic field strength. The results show a pseudo-harmonic pattern in the entropy of a delta quantum dot system, indicating distinct regimes, potential phase transitions, and their involvement in quantum coherence. Our findings shed light on the intricate interplay between electric and magnetic fields, providing valuable insights into the thermodynamic behavior of ΔQDs. This study contributes to the broader understanding of quantum dots and their potential applications in future technological advancements.
期刊介绍:
Indian Journal of Physics is a monthly research journal in English published by the Indian Association for the Cultivation of Sciences in collaboration with the Indian Physical Society. The journal publishes refereed papers covering current research in Physics in the following category: Astrophysics, Atmospheric and Space physics; Atomic & Molecular Physics; Biophysics; Condensed Matter & Materials Physics; General & Interdisciplinary Physics; Nonlinear dynamics & Complex Systems; Nuclear Physics; Optics and Spectroscopy; Particle Physics; Plasma Physics; Relativity & Cosmology; Statistical Physics.