A Novel E/F Controller for Squirrel Cage Induction Motor Based on Rotor Flux Orientation

Himanshu Swami;Amit Kumar Jain
{"title":"A Novel E/F Controller for Squirrel Cage Induction Motor Based on Rotor Flux Orientation","authors":"Himanshu Swami;Amit Kumar Jain","doi":"10.1109/JESTIE.2024.3523937","DOIUrl":null,"url":null,"abstract":"In this article, a novel E/F control algorithm is proposed for the three-phase squirrel cage induction motor based on its rotor-flux-oriented model. The proposed scheme is meant for a current-sensor-less induction motor drive operating with speed feedback, and it offers an attractive solution to various problems associated with the traditional V/F type of induction motor drive unit. The speed control loop of the proposed scheme emulates the back-electromotive force of the motor and not the terminal voltage, and therefore, the decrease in the magnetizing flux in the low-speed region is overcome. In addition, the low-speed operation becomes possible with the proposed E/F scheme, which is difficult to realize with the traditional V/F motor drive unit. Moreover, since the proposed strategy is based on the rotor-flux-oriented model of the motor, it gives performance that is on par with a vector-controlled induction motor drive unit, and the control algorithm is simplified. The proposed scheme is validated using simulation and verified using a fractional horse-power squirrel-cage induction machine coupled to a separately excited dc machine. To emphasize its performance, it is also compared with the vector-control algorithm.","PeriodicalId":100620,"journal":{"name":"IEEE Journal of Emerging and Selected Topics in Industrial Electronics","volume":"6 2","pages":"643-653"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Emerging and Selected Topics in Industrial Electronics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10818392/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, a novel E/F control algorithm is proposed for the three-phase squirrel cage induction motor based on its rotor-flux-oriented model. The proposed scheme is meant for a current-sensor-less induction motor drive operating with speed feedback, and it offers an attractive solution to various problems associated with the traditional V/F type of induction motor drive unit. The speed control loop of the proposed scheme emulates the back-electromotive force of the motor and not the terminal voltage, and therefore, the decrease in the magnetizing flux in the low-speed region is overcome. In addition, the low-speed operation becomes possible with the proposed E/F scheme, which is difficult to realize with the traditional V/F motor drive unit. Moreover, since the proposed strategy is based on the rotor-flux-oriented model of the motor, it gives performance that is on par with a vector-controlled induction motor drive unit, and the control algorithm is simplified. The proposed scheme is validated using simulation and verified using a fractional horse-power squirrel-cage induction machine coupled to a separately excited dc machine. To emphasize its performance, it is also compared with the vector-control algorithm.
基于转子磁链定向的鼠笼式异步电动机E/F控制器
基于三相鼠笼式异步电动机转子磁链定向模型,提出了一种新的E/F控制算法。所提出的方案适用于无电流传感器的感应电机驱动,并具有速度反馈,它为与传统V/F型感应电机驱动单元相关的各种问题提供了有吸引力的解决方案。该方案的速度控制回路模拟的是电机的反电动势,而不是终端电压,因此克服了低速区磁通量下降的问题。此外,本文提出的E/F方案可以实现传统V/F电机驱动单元难以实现的低速运行。此外,由于该策略基于电机的转子磁链定向模型,因此其性能与矢量控制的感应电机驱动单元相当,并且简化了控制算法。通过仿真验证了所提方案的有效性,并将分马力鼠笼式感应电机与单独励磁直流电机耦合进行了验证。为了强调其性能,还将其与矢量控制算法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信