{"title":"Schedule multi-instance microservices to minimize response time under budget constraint in cloud HPC systems","authors":"Dong Wang , Hong Shen , Hui Tian , Yuanhao Yang","doi":"10.1016/j.jpdc.2025.105086","DOIUrl":null,"url":null,"abstract":"<div><div>In the emerging microservice-based architecture of cloud HPC systems, a challenging problem of critical importance for system service capability is how we can schedule microservices to minimize the end-to-end response time for user requests while keeping cost within the specified budget. We address this problem for multi-instance microservices requested by a single application to which no existing result is known to our knowledge. We propose an effective two-stage solution of first allocating budget (resources) to microservices within the budget constraint and then deploying microservice instances on servers to minimize system operational overhead. For budget allocation, we formulate it as the Discrete Time Cost Tradeoff (DTCT) problem which is NP-hard, present a linear program (LP) based algorithm, and provide a rigorous proof of its worst-case performance guarantee of 4 from the optimal solution. For microservice deployment, we show that it is harder than the NP-hard problem of 1-D binpacking through establishing its mathematical model, and propose a heuristic algorithm of Least First Mapping that greedily places microservice instances on fewest possible servers to minimize system operation cost. The experiment results of extensive simulations on DAG-based applications of different sizes demonstrate the superior performance of our algorithm in comparison with the existing approaches.</div></div>","PeriodicalId":54775,"journal":{"name":"Journal of Parallel and Distributed Computing","volume":"202 ","pages":"Article 105086"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Parallel and Distributed Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S074373152500053X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
In the emerging microservice-based architecture of cloud HPC systems, a challenging problem of critical importance for system service capability is how we can schedule microservices to minimize the end-to-end response time for user requests while keeping cost within the specified budget. We address this problem for multi-instance microservices requested by a single application to which no existing result is known to our knowledge. We propose an effective two-stage solution of first allocating budget (resources) to microservices within the budget constraint and then deploying microservice instances on servers to minimize system operational overhead. For budget allocation, we formulate it as the Discrete Time Cost Tradeoff (DTCT) problem which is NP-hard, present a linear program (LP) based algorithm, and provide a rigorous proof of its worst-case performance guarantee of 4 from the optimal solution. For microservice deployment, we show that it is harder than the NP-hard problem of 1-D binpacking through establishing its mathematical model, and propose a heuristic algorithm of Least First Mapping that greedily places microservice instances on fewest possible servers to minimize system operation cost. The experiment results of extensive simulations on DAG-based applications of different sizes demonstrate the superior performance of our algorithm in comparison with the existing approaches.
期刊介绍:
This international journal is directed to researchers, engineers, educators, managers, programmers, and users of computers who have particular interests in parallel processing and/or distributed computing.
The Journal of Parallel and Distributed Computing publishes original research papers and timely review articles on the theory, design, evaluation, and use of parallel and/or distributed computing systems. The journal also features special issues on these topics; again covering the full range from the design to the use of our targeted systems.