Najib Djamai , Richard Fernandes , Lixin Sun , Gang Hong , Luke A. Brown , Harry Morris , Jadu Dash
{"title":"On the consistency and stability of vegetation biophysical variables retrievals from Landsat-8/9 and Sentinel-2","authors":"Najib Djamai , Richard Fernandes , Lixin Sun , Gang Hong , Luke A. Brown , Harry Morris , Jadu Dash","doi":"10.1016/j.isprsjprs.2025.04.006","DOIUrl":null,"url":null,"abstract":"<div><div>Systematic decametric resolution global mapping of vegetation biophysical variables, including fraction of absorbed photosynthetically active radiation (fAPAR), fraction of vegetation cover (fCOVER), and leaf area index (LAI), is required to support various activities, including climate adaptation, crop management, biodiversity monitoring, and ecosystem assessments. The Canada Centre for Remote Sensing (CCRS) version of the Simplified Level 2 Prototype Processor (SL2P-CCRS) enables global mapping of these variables using freely available medium resolution multispectral satellite data from Sentinel-2 (S2) and Landsat-8/9 (LS) data. In this study, fiducial reference measurements (RMs) from the National Ecological Observatory Network (NEON) supplemented with regional measurements from CCRS were used to evaluate the consistency between SL2P-CCRS estimates of fAPAR, fCOVER and LAI from LS and S2 data and to quantify their temporal stability. SL2P-CCRS estimates of fCOVER (Accuracy (A) ∼ 0.03, Uncertainty (U) ∼ 0.13) and fAPAR (A ∼ −0.03, U ∼ 0.13) from LS and S2 were unbiased, and generally similar between sensors, based on 6569 LS-RMs and 4932 S2-RMs matchups. However, LAI estimates, especially for woody wetlands, deciduous forest, and mixed forest, were underestimated, with better estimates obtained using S2 (A ∼ −0.33, U ∼ 0.98) than LS (A ∼ −0.43, U ∼ 1.13). For all variables, SL2P-CCRS LS estimates were highly correlated to S2 estimates overall (R2 0.80 to 0.82) but up to 35 % lower for LAI over broadleaf and mixed forests and between lower 10 % and 20 % otherwise. The inter-annual stability of SL2P-CCRS estimates from both LS and S2 fell within the Global Climate Observing System (GCOS) requirements with the mean (standard deviation) values of −0.01 yr<sup>−1</sup> (0.06 yr<sup>−1</sup>) for LS LAI, 0.02 yr<sup>−1</sup> (0.09 yr<sup>−1</sup>) for S2 LAI, and 0 yr<sup>−1</sup> (0.01 yr<sup>−1</sup>) for fCOVER and fAPAR from both LS and S2. The stability of both S2 and LS vegetation biophysical products indicate that are well suited for quantify the physical response of vegetation to climate variability, disturbances and regeneration.</div></div>","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":"224 ","pages":"Pages 329-347"},"PeriodicalIF":10.6000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092427162500142X","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Systematic decametric resolution global mapping of vegetation biophysical variables, including fraction of absorbed photosynthetically active radiation (fAPAR), fraction of vegetation cover (fCOVER), and leaf area index (LAI), is required to support various activities, including climate adaptation, crop management, biodiversity monitoring, and ecosystem assessments. The Canada Centre for Remote Sensing (CCRS) version of the Simplified Level 2 Prototype Processor (SL2P-CCRS) enables global mapping of these variables using freely available medium resolution multispectral satellite data from Sentinel-2 (S2) and Landsat-8/9 (LS) data. In this study, fiducial reference measurements (RMs) from the National Ecological Observatory Network (NEON) supplemented with regional measurements from CCRS were used to evaluate the consistency between SL2P-CCRS estimates of fAPAR, fCOVER and LAI from LS and S2 data and to quantify their temporal stability. SL2P-CCRS estimates of fCOVER (Accuracy (A) ∼ 0.03, Uncertainty (U) ∼ 0.13) and fAPAR (A ∼ −0.03, U ∼ 0.13) from LS and S2 were unbiased, and generally similar between sensors, based on 6569 LS-RMs and 4932 S2-RMs matchups. However, LAI estimates, especially for woody wetlands, deciduous forest, and mixed forest, were underestimated, with better estimates obtained using S2 (A ∼ −0.33, U ∼ 0.98) than LS (A ∼ −0.43, U ∼ 1.13). For all variables, SL2P-CCRS LS estimates were highly correlated to S2 estimates overall (R2 0.80 to 0.82) but up to 35 % lower for LAI over broadleaf and mixed forests and between lower 10 % and 20 % otherwise. The inter-annual stability of SL2P-CCRS estimates from both LS and S2 fell within the Global Climate Observing System (GCOS) requirements with the mean (standard deviation) values of −0.01 yr−1 (0.06 yr−1) for LS LAI, 0.02 yr−1 (0.09 yr−1) for S2 LAI, and 0 yr−1 (0.01 yr−1) for fCOVER and fAPAR from both LS and S2. The stability of both S2 and LS vegetation biophysical products indicate that are well suited for quantify the physical response of vegetation to climate variability, disturbances and regeneration.
期刊介绍:
The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive.
P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields.
In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.