The fate of an extremely phenocryst-rich magma in producing small sub-Plinian plumes during the 17th and 30th April 2024 eruption of Mt. Ruang (North Sulawesi, Indonesia): The role of clast density
Indranova Suhendro , Geri Agroli , Gabriela Nogo Retnaningtyas Bunga Naen , Muhammad Andriansyah Gurusinga , Dini Nurfiani , Friska Putri Ayunda , Robinsar Jogi Yoshua Manullang , Noriyoshi Tsuchiya
{"title":"The fate of an extremely phenocryst-rich magma in producing small sub-Plinian plumes during the 17th and 30th April 2024 eruption of Mt. Ruang (North Sulawesi, Indonesia): The role of clast density","authors":"Indranova Suhendro , Geri Agroli , Gabriela Nogo Retnaningtyas Bunga Naen , Muhammad Andriansyah Gurusinga , Dini Nurfiani , Friska Putri Ayunda , Robinsar Jogi Yoshua Manullang , Noriyoshi Tsuchiya","doi":"10.1016/j.jvolgeores.2025.108332","DOIUrl":null,"url":null,"abstract":"<div><div>After ∼22 years of dormancy, two vigorous sub-Plinian eruptions occurred at Mt. Ruang (North Sulawesi, Indonesia) on April 17th and 30th 2024, with an observed plume height of 9–12 and 19 km, respectively. Petrography and whole-rock XRF analysis reveal that Ruang pumices are extremely rich in phenocrysts (0.36–0.87 <span><math><msub><mi>ф</mi><mi>PC</mi></msub></math></span>; plagioclase>amphibole>pyroxenes>olivine>oxides) and dense (1.31–2.33 g/cm<sup>3</sup>), with SiO<sub>2</sub> contents of 54.0–56.3 wt%. This suggests that the eruption was sourced by an extremely crystal-rich basaltic-andesite magma reservoir. The magma likely received substantial recharge from the deeper-hotter source as evidenced by the prevalence of amphibole megacryst, crystal clots, and disequilibrium phenocryst textures (i.e., reverse zoning, oscillatory zoning, and fine sieves). Ash from the 17th and 30th April 2024 eruptions are classified as very fine ash (median of 29 and 26 μm, respectively) and exhibit a blocky characteristic (0.75–0.99 convexity and 0.71–0.98 solidity). This evidence, coupled with the presence of stepped surface and hackle marks textures strongly suggests the involvement of external water during the eruption. The fact that Ruang pumices are characterized by high matrix-vesicle and feldspar microlite number density values (log ∼15 m<sup>−3</sup>) suggests that the magma decompression was rapid, reaching 0.05–27 MPa/s. However, despite this condition, the eruption was only able to generate relatively small sub-Plinian plumes. By consulting with the huge dataset from other previous studies, we found that plume height shows a negative correlation with phenocryst content and bulk density, with Ruang pumices having the highest phenocryst content and bulk density variations. This suggests that; besides magma decompression rates and magma-water interaction, the pre-eruptive crystallinity condition within the magma reservoir is essential for controlling the plume height and hence might be used as a proxy to predict the intensity of future eruptions.</div></div>","PeriodicalId":54753,"journal":{"name":"Journal of Volcanology and Geothermal Research","volume":"463 ","pages":"Article 108332"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Volcanology and Geothermal Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037702732500068X","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
After ∼22 years of dormancy, two vigorous sub-Plinian eruptions occurred at Mt. Ruang (North Sulawesi, Indonesia) on April 17th and 30th 2024, with an observed plume height of 9–12 and 19 km, respectively. Petrography and whole-rock XRF analysis reveal that Ruang pumices are extremely rich in phenocrysts (0.36–0.87 ; plagioclase>amphibole>pyroxenes>olivine>oxides) and dense (1.31–2.33 g/cm3), with SiO2 contents of 54.0–56.3 wt%. This suggests that the eruption was sourced by an extremely crystal-rich basaltic-andesite magma reservoir. The magma likely received substantial recharge from the deeper-hotter source as evidenced by the prevalence of amphibole megacryst, crystal clots, and disequilibrium phenocryst textures (i.e., reverse zoning, oscillatory zoning, and fine sieves). Ash from the 17th and 30th April 2024 eruptions are classified as very fine ash (median of 29 and 26 μm, respectively) and exhibit a blocky characteristic (0.75–0.99 convexity and 0.71–0.98 solidity). This evidence, coupled with the presence of stepped surface and hackle marks textures strongly suggests the involvement of external water during the eruption. The fact that Ruang pumices are characterized by high matrix-vesicle and feldspar microlite number density values (log ∼15 m−3) suggests that the magma decompression was rapid, reaching 0.05–27 MPa/s. However, despite this condition, the eruption was only able to generate relatively small sub-Plinian plumes. By consulting with the huge dataset from other previous studies, we found that plume height shows a negative correlation with phenocryst content and bulk density, with Ruang pumices having the highest phenocryst content and bulk density variations. This suggests that; besides magma decompression rates and magma-water interaction, the pre-eruptive crystallinity condition within the magma reservoir is essential for controlling the plume height and hence might be used as a proxy to predict the intensity of future eruptions.
期刊介绍:
An international research journal with focus on volcanic and geothermal processes and their impact on the environment and society.
Submission of papers covering the following aspects of volcanology and geothermal research are encouraged:
(1) Geological aspects of volcanic systems: volcano stratigraphy, structure and tectonic influence; eruptive history; evolution of volcanic landforms; eruption style and progress; dispersal patterns of lava and ash; analysis of real-time eruption observations.
(2) Geochemical and petrological aspects of volcanic rocks: magma genesis and evolution; crystallization; volatile compositions, solubility, and degassing; volcanic petrography and textural analysis.
(3) Hydrology, geochemistry and measurement of volcanic and hydrothermal fluids: volcanic gas emissions; fumaroles and springs; crater lakes; hydrothermal mineralization.
(4) Geophysical aspects of volcanic systems: physical properties of volcanic rocks and magmas; heat flow studies; volcano seismology, geodesy and remote sensing.
(5) Computational modeling and experimental simulation of magmatic and hydrothermal processes: eruption dynamics; magma transport and storage; plume dynamics and ash dispersal; lava flow dynamics; hydrothermal fluid flow; thermodynamics of aqueous fluids and melts.
(6) Volcano hazard and risk research: hazard zonation methodology, development of forecasting tools; assessment techniques for vulnerability and impact.