{"title":"The foot, the fan, and the cuprate phase diagram: Fermi-volume-changing quantum phase transitions","authors":"Subir Sachdev","doi":"10.1016/j.physc.2025.1354707","DOIUrl":null,"url":null,"abstract":"<div><div>A Fermi liquid with a ‘large’ Fermi surface (FL) can have a quantum phase transition to a spin density wave state (SDW) with reconstructed ‘small’ Fermi pockets. Both FL and SDW phases obey the Luttinger constraints on the volume enclosed by the Fermi surfaces. Critical spin fluctuations lead to spin-singlet <span><math><mi>d</mi></math></span>-wave pairing, as observed in the cuprates. Studies of the influence of spatial disorder on the FL-SDW quantum phase transition predict an extended quantum-critical Griffiths-type phase at low temperatures on the large Fermi surface side. These computations agree with the ‘foot’ of strange metal transport, and recent low temperature neutron scattering observations on La<span><math><msub><mrow></mrow><mrow><mn>2</mn><mo>−</mo><mi>x</mi></mrow></msub></math></span>Sr<span><math><msub><mrow></mrow><mrow><mi>x</mi></mrow></msub></math></span>CuO<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span>.</div><div>However, this theory cannot explain the higher temperature pseudogap and the ‘fan’ of strange metal behavior of the hole-doped cuprates. Here we need to consider underlying Fermi-volume-changing quantum phase transitions without symmetry breaking. Then the small Fermi surface phase does not obey the Luttinger constraint, and the pseudogap metal is described by thermal fluctuations above a ‘fractionalized Fermi liquid’ (FL*) or a ‘holon metal’, with the descriptions related by a duality on a background spin liquid. The quantum critical fan is described using a field theory for an underlying FL-FL* quantum phase transition in the presence of spatial disorder. This field theory can be mapped to a form which can be analyzed using the methods of the Sachdev–Ye–Kitaev model. Such an analysis successfully models linear-in-temperature resistivity, optical conductivity and thermopower observations in the quantum critical fan.</div><div>The confinement crossover connecting these lower and higher temperature descriptions is also discussed.</div></div>","PeriodicalId":20159,"journal":{"name":"Physica C-superconductivity and Its Applications","volume":"633 ","pages":"Article 1354707"},"PeriodicalIF":1.3000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica C-superconductivity and Its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921453425000607","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
A Fermi liquid with a ‘large’ Fermi surface (FL) can have a quantum phase transition to a spin density wave state (SDW) with reconstructed ‘small’ Fermi pockets. Both FL and SDW phases obey the Luttinger constraints on the volume enclosed by the Fermi surfaces. Critical spin fluctuations lead to spin-singlet -wave pairing, as observed in the cuprates. Studies of the influence of spatial disorder on the FL-SDW quantum phase transition predict an extended quantum-critical Griffiths-type phase at low temperatures on the large Fermi surface side. These computations agree with the ‘foot’ of strange metal transport, and recent low temperature neutron scattering observations on LaSrCuO.
However, this theory cannot explain the higher temperature pseudogap and the ‘fan’ of strange metal behavior of the hole-doped cuprates. Here we need to consider underlying Fermi-volume-changing quantum phase transitions without symmetry breaking. Then the small Fermi surface phase does not obey the Luttinger constraint, and the pseudogap metal is described by thermal fluctuations above a ‘fractionalized Fermi liquid’ (FL*) or a ‘holon metal’, with the descriptions related by a duality on a background spin liquid. The quantum critical fan is described using a field theory for an underlying FL-FL* quantum phase transition in the presence of spatial disorder. This field theory can be mapped to a form which can be analyzed using the methods of the Sachdev–Ye–Kitaev model. Such an analysis successfully models linear-in-temperature resistivity, optical conductivity and thermopower observations in the quantum critical fan.
The confinement crossover connecting these lower and higher temperature descriptions is also discussed.
期刊介绍:
Physica C (Superconductivity and its Applications) publishes peer-reviewed papers on novel developments in the field of superconductivity. Topics include discovery of new superconducting materials and elucidation of their mechanisms, physics of vortex matter, enhancement of critical properties of superconductors, identification of novel properties and processing methods that improve their performance and promote new routes to applications of superconductivity.
The main goal of the journal is to publish:
1. Papers that substantially increase the understanding of the fundamental aspects and mechanisms of superconductivity and vortex matter through theoretical and experimental methods.
2. Papers that report on novel physical properties and processing of materials that substantially enhance their critical performance.
3. Papers that promote new or improved routes to applications of superconductivity and/or superconducting materials, and proof-of-concept novel proto-type superconducting devices.
The editors of the journal will select papers that are well written and based on thorough research that provide truly novel insights.