Regen: An object layout regenerator on large-scale production HPC systems

IF 6.2 2区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Dong Kyu Sung , Sunggon Kim , Sangjin Lee , Houjun Tang , Alex Sim , Kesheng Wu , Suren Byna , Yongseok Son
{"title":"Regen: An object layout regenerator on large-scale production HPC systems","authors":"Dong Kyu Sung ,&nbsp;Sunggon Kim ,&nbsp;Sangjin Lee ,&nbsp;Houjun Tang ,&nbsp;Alex Sim ,&nbsp;Kesheng Wu ,&nbsp;Suren Byna ,&nbsp;Yongseok Son","doi":"10.1016/j.future.2025.107830","DOIUrl":null,"url":null,"abstract":"<div><div>This article proposes an object layout regenerator called Regen which regenerates and removes the object layout dynamically to improve the read performance of applications. Regen first detects frequent access patterns from the I/O requests of the applications. Second, Regen reorganizes the objects and regenerates or preallocates new object layouts according to the identified access patterns. Finally, Regen removes or reuses the obsolete or regenerated object layouts as necessary. As a result, Regen accelerates access to objects by providing a flexible object layout. We implement Regen as a framework on top of Proactive Data Container (PDC) and evaluate it on Cori supercomputer, a production-scale HPC system, by using realistic HPC I/O benchmarks. The experimental results show that Regen improves the I/O performance by up to 16.92<span><math><mo>×</mo></math></span> compared with an existing system.</div></div>","PeriodicalId":55132,"journal":{"name":"Future Generation Computer Systems-The International Journal of Escience","volume":"171 ","pages":"Article 107830"},"PeriodicalIF":6.2000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Generation Computer Systems-The International Journal of Escience","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167739X25001256","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

This article proposes an object layout regenerator called Regen which regenerates and removes the object layout dynamically to improve the read performance of applications. Regen first detects frequent access patterns from the I/O requests of the applications. Second, Regen reorganizes the objects and regenerates or preallocates new object layouts according to the identified access patterns. Finally, Regen removes or reuses the obsolete or regenerated object layouts as necessary. As a result, Regen accelerates access to objects by providing a flexible object layout. We implement Regen as a framework on top of Proactive Data Container (PDC) and evaluate it on Cori supercomputer, a production-scale HPC system, by using realistic HPC I/O benchmarks. The experimental results show that Regen improves the I/O performance by up to 16.92× compared with an existing system.
Regen:用于大规模生产HPC系统的对象布局再生器
本文提出了一种对象布局再生器(Regen),它可以动态地再生和删除对象布局,以提高应用程序的读取性能。Regen首先从应用程序的I/O请求中检测频繁的访问模式。其次,Regen根据识别的访问模式对对象进行重组,并重新生成或预分配新的对象布局。最后,Regen根据需要删除或重用过时或重新生成的对象布局。因此,Regen通过提供灵活的对象布局加速了对对象的访问。我们将Regen作为一个框架实现在主动数据容器(PDC)之上,并通过使用实际的HPC I/O基准测试,在Cori超级计算机(一个生产规模的HPC系统)上对其进行评估。实验结果表明,与现有系统相比,Regen的I/O性能提高了16.92倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
19.90
自引率
2.70%
发文量
376
审稿时长
10.6 months
期刊介绍: Computing infrastructures and systems are constantly evolving, resulting in increasingly complex and collaborative scientific applications. To cope with these advancements, there is a growing need for collaborative tools that can effectively map, control, and execute these applications. Furthermore, with the explosion of Big Data, there is a requirement for innovative methods and infrastructures to collect, analyze, and derive meaningful insights from the vast amount of data generated. This necessitates the integration of computational and storage capabilities, databases, sensors, and human collaboration. Future Generation Computer Systems aims to pioneer advancements in distributed systems, collaborative environments, high-performance computing, and Big Data analytics. It strives to stay at the forefront of developments in grids, clouds, and the Internet of Things (IoT) to effectively address the challenges posed by these wide-area, fully distributed sensing and computing systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信