Expression of CREB3L1 blocks key cancer pathways and suppresses metastasis of lung squamous cell carcinoma cells

IF 4.2 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Paul Mellor , Stephanie Kendall , S. Austin Hammond , Riley Plett , Liliia Kyrylenko , Anurag Saxena , Deborah H. Anderson
{"title":"Expression of CREB3L1 blocks key cancer pathways and suppresses metastasis of lung squamous cell carcinoma cells","authors":"Paul Mellor ,&nbsp;Stephanie Kendall ,&nbsp;S. Austin Hammond ,&nbsp;Riley Plett ,&nbsp;Liliia Kyrylenko ,&nbsp;Anurag Saxena ,&nbsp;Deborah H. Anderson","doi":"10.1016/j.bbadis.2025.167845","DOIUrl":null,"url":null,"abstract":"<div><div>Lung cancer is the leading cause of death due to cancer, with higher mortality rates than cancers of the colon, breast and prostate combined. About one quarter of lung cancers are lung squamous cell carcinomas (LUSC), with a five-year survival rate of only 16 %. We discovered that the majority of LUSCs have reduced expression of a key transcription factor CREB3L1 (cAMP responsive element binding protein 3 like 1), known to function as a metastasis suppressor in breast, bladder and ovarian cancers. In this report, we set out to determine if CREB3L1 functions as a metastasis suppressor in LUSCs. A differential gene expression analysis showed that ectopic expression of CREB3L1 in NCI-H2170 and NCI-1703 cells caused significant reductions in many signaling pathway genes involved in promoting cell viability, survival, migration and angiogenesis. Expression of CREB3L1 was able to reduce cell migration and anchorage-independent growth in soft agar in NCI-H2170, NCI-H1703 and NCI-H226 LUSC cells. Expression of CREB3L1 had less impact on the growth of primary xenograft tumors for NCI-H2170 and NCI-H1703 cells, the latter of which formed atypical masses filled with blood. In contrast, xenografts of NCI-H226 expressing CREB3L1 showed significant reductions in primary tumor growth. Finally, in a mouse metastasis assay, expression of CREB3L1 in NCI-H2170 cells significantly reduced the formation of liver metastases and in NCI-H226 cells, lung metastases, as compared to their respective CREB3L1-deficient parental LUSC cells. Taken together, these results strongly support a role for CREB3L1 as a metastasis suppressor in lung squamous cell carcinoma cells.</div></div>","PeriodicalId":8821,"journal":{"name":"Biochimica et biophysica acta. Molecular basis of disease","volume":"1871 6","pages":"Article 167845"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular basis of disease","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925443925001905","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Lung cancer is the leading cause of death due to cancer, with higher mortality rates than cancers of the colon, breast and prostate combined. About one quarter of lung cancers are lung squamous cell carcinomas (LUSC), with a five-year survival rate of only 16 %. We discovered that the majority of LUSCs have reduced expression of a key transcription factor CREB3L1 (cAMP responsive element binding protein 3 like 1), known to function as a metastasis suppressor in breast, bladder and ovarian cancers. In this report, we set out to determine if CREB3L1 functions as a metastasis suppressor in LUSCs. A differential gene expression analysis showed that ectopic expression of CREB3L1 in NCI-H2170 and NCI-1703 cells caused significant reductions in many signaling pathway genes involved in promoting cell viability, survival, migration and angiogenesis. Expression of CREB3L1 was able to reduce cell migration and anchorage-independent growth in soft agar in NCI-H2170, NCI-H1703 and NCI-H226 LUSC cells. Expression of CREB3L1 had less impact on the growth of primary xenograft tumors for NCI-H2170 and NCI-H1703 cells, the latter of which formed atypical masses filled with blood. In contrast, xenografts of NCI-H226 expressing CREB3L1 showed significant reductions in primary tumor growth. Finally, in a mouse metastasis assay, expression of CREB3L1 in NCI-H2170 cells significantly reduced the formation of liver metastases and in NCI-H226 cells, lung metastases, as compared to their respective CREB3L1-deficient parental LUSC cells. Taken together, these results strongly support a role for CREB3L1 as a metastasis suppressor in lung squamous cell carcinoma cells.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.30
自引率
0.00%
发文量
218
审稿时长
32 days
期刊介绍: BBA Molecular Basis of Disease addresses the biochemistry and molecular genetics of disease processes and models of human disease. This journal covers aspects of aging, cancer, metabolic-, neurological-, and immunological-based disease. Manuscripts focused on using animal models to elucidate biochemical and mechanistic insight in each of these conditions, are particularly encouraged. Manuscripts should emphasize the underlying mechanisms of disease pathways and provide novel contributions to the understanding and/or treatment of these disorders. Highly descriptive and method development submissions may be declined without full review. The submission of uninvited reviews to BBA - Molecular Basis of Disease is strongly discouraged, and any such uninvited review should be accompanied by a coverletter outlining the compelling reasons why the review should be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信