{"title":"GDCM: Generalized data completion model for satellite observations","authors":"Haoyu Wang , Yinfei Zhou , Xiaofeng Li","doi":"10.1016/j.rse.2025.114760","DOIUrl":null,"url":null,"abstract":"<div><div>Ocean remote sensing data is crucial in understanding the global climate system. Due to satellite orbital coverage gaps and cloud cover, satellite ocean remote sensing products have significant data gaps. This paper introduces a Generalized Data Completion Model (GDCM) based on deep learning to reconstruct gap-free and cloud-free key oceanic variables such as sea surface temperature (SST), wind speed, water vapor, cloud liquid water, and precipitation rate derived from polar-orbiting satellite sensors including Advanced Microwave Scanning Radiometer 2 (AMSR2), the Special Sensor Microwave Imager (SSMI), and the Moderate Resolution Imaging Spectroradiometer (MODIS). Utilizing Convolutional Neural Networks (CNNs) and attention mechanisms, the GDCM model effectively leverages spatio-temporal information within remote sensing data to fill in missing regions accurately. We use reanalysis data to simulate various data missing scenarios during model training for model development. We tested the model with the US East Coast region's global-coverage AMSR2/SSMI and local-coverage MODIS datasets. The experiments demonstrate that the GDCM model successfully and precisely completes the data for different satellites and types of missing data. To enable the model to capture enough data for the dynamical change patterns, we used seven consecutive days of observation data as inputs to improve the model's data-completion ability, significantly enhancing the handling of MODIS SST missing data due to cloud cover. When the input data's duration increased from one day to seven days, the model's R<sup>2</sup> value improved from 0.062 to 0.93, and the Root Mean Square Difference (RMSD) decreased from 6.58 to 0.92. Besides the model framework design, we implemented the incremental learning training strategy to enhance the model's data completion capability for different types of missing data, especially for SST data from AMSR2 satellites. The model's completed SST data R<sup>2</sup> value improved from 0.93 to 0.99, and the RMSD decreased from 2.64 °C to 0.50 °C. The Mean Absolute Difference (MAD) of water vapor data decreased from 0.88 kg/m<sup>2</sup> to 0.76 kg/m<sup>2</sup>, and the RMSD decreased from 1.39 kg/m<sup>2</sup> to 1.27 kg/m<sup>2</sup>. This study provides a generalized new solution to the problem of missing ocean data at different resolutions, contributing to a more comprehensive and supporting ocean science research and related applications.</div></div>","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"324 ","pages":"Article 114760"},"PeriodicalIF":11.1000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034425725001646","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Ocean remote sensing data is crucial in understanding the global climate system. Due to satellite orbital coverage gaps and cloud cover, satellite ocean remote sensing products have significant data gaps. This paper introduces a Generalized Data Completion Model (GDCM) based on deep learning to reconstruct gap-free and cloud-free key oceanic variables such as sea surface temperature (SST), wind speed, water vapor, cloud liquid water, and precipitation rate derived from polar-orbiting satellite sensors including Advanced Microwave Scanning Radiometer 2 (AMSR2), the Special Sensor Microwave Imager (SSMI), and the Moderate Resolution Imaging Spectroradiometer (MODIS). Utilizing Convolutional Neural Networks (CNNs) and attention mechanisms, the GDCM model effectively leverages spatio-temporal information within remote sensing data to fill in missing regions accurately. We use reanalysis data to simulate various data missing scenarios during model training for model development. We tested the model with the US East Coast region's global-coverage AMSR2/SSMI and local-coverage MODIS datasets. The experiments demonstrate that the GDCM model successfully and precisely completes the data for different satellites and types of missing data. To enable the model to capture enough data for the dynamical change patterns, we used seven consecutive days of observation data as inputs to improve the model's data-completion ability, significantly enhancing the handling of MODIS SST missing data due to cloud cover. When the input data's duration increased from one day to seven days, the model's R2 value improved from 0.062 to 0.93, and the Root Mean Square Difference (RMSD) decreased from 6.58 to 0.92. Besides the model framework design, we implemented the incremental learning training strategy to enhance the model's data completion capability for different types of missing data, especially for SST data from AMSR2 satellites. The model's completed SST data R2 value improved from 0.93 to 0.99, and the RMSD decreased from 2.64 °C to 0.50 °C. The Mean Absolute Difference (MAD) of water vapor data decreased from 0.88 kg/m2 to 0.76 kg/m2, and the RMSD decreased from 1.39 kg/m2 to 1.27 kg/m2. This study provides a generalized new solution to the problem of missing ocean data at different resolutions, contributing to a more comprehensive and supporting ocean science research and related applications.
期刊介绍:
Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing.
The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques.
RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.