A gradient-based nonlinear multi-pixel physical method for simultaneously separating component temperature and emissivity from nonisothermal mixed pixels with DART

IF 11.1 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Zhijun Zhen , Shengbo Chen , Nicolas Lauret , Abdelaziz Kallel , Tiangang Yin , Jonathan León-Tavares , Biao Cao , Jean-Philippe Gastellu-Etchegorry
{"title":"A gradient-based nonlinear multi-pixel physical method for simultaneously separating component temperature and emissivity from nonisothermal mixed pixels with DART","authors":"Zhijun Zhen ,&nbsp;Shengbo Chen ,&nbsp;Nicolas Lauret ,&nbsp;Abdelaziz Kallel ,&nbsp;Tiangang Yin ,&nbsp;Jonathan León-Tavares ,&nbsp;Biao Cao ,&nbsp;Jean-Philippe Gastellu-Etchegorry","doi":"10.1016/j.rse.2025.114738","DOIUrl":null,"url":null,"abstract":"<div><div>Component temperature and emissivity are crucial for understanding plant physiology and urban thermal dynamics. However, existing thermal infrared unmixing methods face challenges in simultaneous retrieval and multi-component analysis. We propose Thermal Remote sensing Unmixing for Subpixel Temperature and emissivity with the Discrete Anisotropic Radiative Transfer model (TRUST-DART), a gradient-based multi-pixel physical method that simultaneously separates component temperature and emissivity from non-isothermal mixed pixels over urban areas. TRUST-DART utilizes the DART model and requires inputs including at-surface radiance imagery, downwelling sky irradiance, a 3D mock-up with component classification, and standard DART parameters (<em>e.g.</em>, spatial resolution and skylight ratio). This method produces maps of component emissivity and temperature. The accuracy of TRUST-DART is evaluated using both vegetation and urban scenes, employing Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images and DART-simulated pseudo-ASTER images. Results show a residual radiance error is approximately 0.05 W/(m<sup>2</sup>·sr). In absence of the co-registration and sensor noise errors, the median residual error of emissivity is approximately 0.02, and the median residual error of temperature is within 1 K. This novel approach significantly advances our ability to analyze thermal properties of urban areas, offering potential breakthroughs in urban environmental monitoring and planning. The source code of TRUST-DART is distributed together with DART (<span><span>https://dart.omp.eu</span><svg><path></path></svg></span>).</div></div>","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"324 ","pages":"Article 114738"},"PeriodicalIF":11.1000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034425725001427","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Component temperature and emissivity are crucial for understanding plant physiology and urban thermal dynamics. However, existing thermal infrared unmixing methods face challenges in simultaneous retrieval and multi-component analysis. We propose Thermal Remote sensing Unmixing for Subpixel Temperature and emissivity with the Discrete Anisotropic Radiative Transfer model (TRUST-DART), a gradient-based multi-pixel physical method that simultaneously separates component temperature and emissivity from non-isothermal mixed pixels over urban areas. TRUST-DART utilizes the DART model and requires inputs including at-surface radiance imagery, downwelling sky irradiance, a 3D mock-up with component classification, and standard DART parameters (e.g., spatial resolution and skylight ratio). This method produces maps of component emissivity and temperature. The accuracy of TRUST-DART is evaluated using both vegetation and urban scenes, employing Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images and DART-simulated pseudo-ASTER images. Results show a residual radiance error is approximately 0.05 W/(m2·sr). In absence of the co-registration and sensor noise errors, the median residual error of emissivity is approximately 0.02, and the median residual error of temperature is within 1 K. This novel approach significantly advances our ability to analyze thermal properties of urban areas, offering potential breakthroughs in urban environmental monitoring and planning. The source code of TRUST-DART is distributed together with DART (https://dart.omp.eu).
基于梯度的非等温混合像元的非线性多像元物理分离方法
组分温度和辐射率是了解植物生理和城市热动力学的关键。然而,现有的热红外解混方法在同时检索和多组分分析方面面临挑战。我们提出了基于离散各向异性辐射传输模型(TRUST-DART)的亚像元温度和发射率的热遥感解混,这是一种基于梯度的多像元物理方法,可以同时从城市地区的非等温混合像元中分离出组分温度和发射率。TRUST-DART利用DART模型,需要输入包括地面辐射图像、下沉天空辐射、带有组件分类的3D模型和标准DART参数(例如空间分辨率和天窗比例)。这种方法产生组件发射率和温度的图。利用先进星载热发射和反射辐射计(ASTER)图像和模拟的伪ASTER图像,利用植被和城市场景对TRUST-DART的精度进行了评估。结果表明,残余辐射误差约为0.05 W/(m2·sr)。在不存在共配准和传感器噪声误差的情况下,发射率的残差中值约为0.02,温度的残差中值在1 K以内。这种新方法大大提高了我们分析城市地区热特性的能力,为城市环境监测和规划提供了潜在的突破。TRUST-DART的源代码随DART一起发布(https://dart.omp.eu)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Remote Sensing of Environment
Remote Sensing of Environment 环境科学-成像科学与照相技术
CiteScore
25.10
自引率
8.90%
发文量
455
审稿时长
53 days
期刊介绍: Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing. The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques. RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信