{"title":"Phase Diagram of Polyelectrolyte Solutions in Ice and Water","authors":"George Mallinos, and , Ali Dhinojwala*, ","doi":"10.1021/acs.jpcb.5c0064410.1021/acs.jpcb.5c00644","DOIUrl":null,"url":null,"abstract":"<p >Strong interactions of polyelectrolytes (PEs) with water have been used to control many technological applications of PEs in cryopreservation as well as in anti-icing or lubricating coatings. In all of these cases, knowledge of the phase diagrams of PE with water is important, particularly at low temperatures, where the ice phase is more stable. In this work, we study the phase diagrams of negatively and positively-charged PEs by using infrared spectroscopy (IR) and differential scanning calorimetry (DSC). The results show a coexistence curve of the ice phase in equilibrium with the PE-rich phase in water. The phase diagrams for positively- and negatively-charged PEs were similar, and a nearly 40% volume fraction of water to polymer remains unfrozen. Comparison of the collected data with the predictions from a theoretical model based on the Gibbs–Thomson and Flory–Huggins models reveals that the concentrated PE-water phase has closely associated counterions, and the entropy of the counterions does not play a dominant role. This finding is surprising since PEs are expected to have strongly dissociated charges under these conditions. Interestingly, we also found evidence of a stable unfrozen water PE phase that does not change upon further cooling to −100 °C. These observations are important for applications where controlling the formation of ice is critical.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":"129 15","pages":"3918–3927 3918–3927"},"PeriodicalIF":2.8000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpcb.5c00644","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Strong interactions of polyelectrolytes (PEs) with water have been used to control many technological applications of PEs in cryopreservation as well as in anti-icing or lubricating coatings. In all of these cases, knowledge of the phase diagrams of PE with water is important, particularly at low temperatures, where the ice phase is more stable. In this work, we study the phase diagrams of negatively and positively-charged PEs by using infrared spectroscopy (IR) and differential scanning calorimetry (DSC). The results show a coexistence curve of the ice phase in equilibrium with the PE-rich phase in water. The phase diagrams for positively- and negatively-charged PEs were similar, and a nearly 40% volume fraction of water to polymer remains unfrozen. Comparison of the collected data with the predictions from a theoretical model based on the Gibbs–Thomson and Flory–Huggins models reveals that the concentrated PE-water phase has closely associated counterions, and the entropy of the counterions does not play a dominant role. This finding is surprising since PEs are expected to have strongly dissociated charges under these conditions. Interestingly, we also found evidence of a stable unfrozen water PE phase that does not change upon further cooling to −100 °C. These observations are important for applications where controlling the formation of ice is critical.
期刊介绍:
An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.