Unraveling the Tether: Exploring Representative Protein Linkers and Their Structural and Thermodynamical Properties

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL
Josef Šulc,  and , Jiří Vondrášek*, 
{"title":"Unraveling the Tether: Exploring Representative Protein Linkers and Their Structural and Thermodynamical Properties","authors":"Josef Šulc,&nbsp; and ,&nbsp;Jiří Vondrášek*,&nbsp;","doi":"10.1021/acs.jpcb.4c0419410.1021/acs.jpcb.4c04194","DOIUrl":null,"url":null,"abstract":"<p >This study explores the thermodynamic and structural behaviors of linker peptides, short polypeptide segments that often bridge protein domains. We are focusing on three prototypical classes─glycine-serine (GS), glycine–glycine (GG), and alanine-proline (AP)─and exploring their conformational dynamics as isolated entities outside a multidomain protein context. Using extensive molecular dynamics (MD) simulations and free energy perturbation (FEP) analyses, we characterize the free energy landscapes, entropic properties, and solvation energetics of 20 representative linkers. Our results reveal a pronounced linear relationship between linker length and key thermodynamic contributions, including zero-point vibrational energy (ZPVE), potential energy, and entropy. Notably, vibrational entropy emerges as a dominant stabilizing term. We also found that AP linkers display more rigid, yet extended conformations compared to the highly flexible GS and moderately flexible GG linkers. These findings underscore the nuanced role of linker composition in contributing to multidomain protein architecture and dynamics, and highlight how thermodynamic forces shape linker conformational behavior. Collectively, our work enhances the mechanistic understanding of protein linkers, offering valuable insights for the rational design of peptide-based systems and informing future efforts to modulate interdomain flexibility and stability in multidomain proteins.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":"129 15","pages":"3720–3730 3720–3730"},"PeriodicalIF":2.8000,"publicationDate":"2025-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.jpcb.4c04194","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpcb.4c04194","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the thermodynamic and structural behaviors of linker peptides, short polypeptide segments that often bridge protein domains. We are focusing on three prototypical classes─glycine-serine (GS), glycine–glycine (GG), and alanine-proline (AP)─and exploring their conformational dynamics as isolated entities outside a multidomain protein context. Using extensive molecular dynamics (MD) simulations and free energy perturbation (FEP) analyses, we characterize the free energy landscapes, entropic properties, and solvation energetics of 20 representative linkers. Our results reveal a pronounced linear relationship between linker length and key thermodynamic contributions, including zero-point vibrational energy (ZPVE), potential energy, and entropy. Notably, vibrational entropy emerges as a dominant stabilizing term. We also found that AP linkers display more rigid, yet extended conformations compared to the highly flexible GS and moderately flexible GG linkers. These findings underscore the nuanced role of linker composition in contributing to multidomain protein architecture and dynamics, and highlight how thermodynamic forces shape linker conformational behavior. Collectively, our work enhances the mechanistic understanding of protein linkers, offering valuable insights for the rational design of peptide-based systems and informing future efforts to modulate interdomain flexibility and stability in multidomain proteins.

解开绳索:探索具有代表性的蛋白质连接体及其结构和热力学性质
本研究探讨了连接肽的热力学和结构行为,连接肽是经常桥接蛋白质结构域的短多肽片段。我们专注于三个原型类─甘氨酸-丝氨酸(GS)、甘氨酸-甘氨酸(GG)和丙氨酸-脯氨酸(AP)─并探索它们作为多结构域蛋白环境外的孤立实体的构象动力学。利用广泛的分子动力学(MD)模拟和自由能摄动(FEP)分析,我们表征了20种代表性连接体的自由能景观、熵性质和溶剂化能量。我们的研究结果表明,连接体长度与关键的热力学贡献,包括零点振动能(ZPVE)、势能和熵之间存在明显的线性关系。值得注意的是,振动熵作为主要的稳定项出现。我们还发现,与高度灵活的GS和适度灵活的GG连接物相比,AP连接物显示出更刚性,但扩展的构象。这些发现强调了连接体组成在促进多结构域蛋白质结构和动力学中的微妙作用,并强调了热力学力如何塑造连接体构象行为。总的来说,我们的工作增强了对蛋白质连接体的机制理解,为合理设计基于肽的系统提供了有价值的见解,并为未来调节多结构域蛋白质的结构域间灵活性和稳定性提供了信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信