Small object detection in side-scan sonar images based on SOCA-YOLO and image restoration

IF 2.8 2区 生物学 Q1 MARINE & FRESHWATER BIOLOGY
Xiaodong Cui, Jiale Zhang, Lingling Zhang, Qunfei Zhang, Jing Han
{"title":"Small object detection in side-scan sonar images based on SOCA-YOLO and image restoration","authors":"Xiaodong Cui, Jiale Zhang, Lingling Zhang, Qunfei Zhang, Jing Han","doi":"10.3389/fmars.2025.1542832","DOIUrl":null,"url":null,"abstract":"Although side-scan sonar can provide wide and high-resolution views of submarine terrain and objects, it suffers from severe interference due to complex environmental noise, variations in sonar configuration (such as frequency, beam pattern, etc.), and the small scale of targets, leading to a high misdetection rate. These challenges highlight the need for advanced detection models that can effectively address these limitations. Here, this paper introduces an enhanced YOLOv9(You Only Look Once v9) model named SOCA-YOLO, which integrates a Small Object focused Convolution module and an Attention mechanism to improve detection performance to tackle the challenges. The SOCA-YOLO framework first constructs a high-resolution SSS (sidescan sonar image) enhancement pipeline through image restoration techniques to extract fine-grained features of micro-scale targets. Subsequently, the SPDConv (Space-to-Depth Convolution) module is incorporated to optimize the feature extraction network, effectively preserving discriminative characteristics of small targets. Furthermore, the model integrates the standardized CBAM (Convolutional Block Attention Module) attention mechanism, enabling adaptive focus on salient regions of small targets in sonar images, thereby significantly improving detection robustness in complex underwater environments. Finally, the model is verified on a public side-scan sonar image dataset Cylinder2. Experiment results indicate that SOCA-YOLO achieves Precision and Recall at 71.8% and 72.7%, with an mAP50 of 74.3%. It outperforms the current state-of-the-art object detection method, YOLO11, as well as the original YOLOv9. Specifically, our model surpasses YOLO11 and YOLOv9 by 2.3% and 6.5% in terms of mAP50, respectively. Therefore, the SOCA-YOLO model provides a new and effective approach for small underwater object detection in side-scan sonar images.","PeriodicalId":12479,"journal":{"name":"Frontiers in Marine Science","volume":"2 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Marine Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmars.2025.1542832","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Although side-scan sonar can provide wide and high-resolution views of submarine terrain and objects, it suffers from severe interference due to complex environmental noise, variations in sonar configuration (such as frequency, beam pattern, etc.), and the small scale of targets, leading to a high misdetection rate. These challenges highlight the need for advanced detection models that can effectively address these limitations. Here, this paper introduces an enhanced YOLOv9(You Only Look Once v9) model named SOCA-YOLO, which integrates a Small Object focused Convolution module and an Attention mechanism to improve detection performance to tackle the challenges. The SOCA-YOLO framework first constructs a high-resolution SSS (sidescan sonar image) enhancement pipeline through image restoration techniques to extract fine-grained features of micro-scale targets. Subsequently, the SPDConv (Space-to-Depth Convolution) module is incorporated to optimize the feature extraction network, effectively preserving discriminative characteristics of small targets. Furthermore, the model integrates the standardized CBAM (Convolutional Block Attention Module) attention mechanism, enabling adaptive focus on salient regions of small targets in sonar images, thereby significantly improving detection robustness in complex underwater environments. Finally, the model is verified on a public side-scan sonar image dataset Cylinder2. Experiment results indicate that SOCA-YOLO achieves Precision and Recall at 71.8% and 72.7%, with an mAP50 of 74.3%. It outperforms the current state-of-the-art object detection method, YOLO11, as well as the original YOLOv9. Specifically, our model surpasses YOLO11 and YOLOv9 by 2.3% and 6.5% in terms of mAP50, respectively. Therefore, the SOCA-YOLO model provides a new and effective approach for small underwater object detection in side-scan sonar images.
基于SOCA-YOLO和图像恢复的侧扫声纳图像小目标检测
虽然侧扫声纳可以提供水下地形和目标的宽分辨率视图,但由于复杂的环境噪声、声纳配置(如频率、波束方向图等)的变化以及目标的小尺度,它受到严重的干扰,导致高误检率。这些挑战凸显了对能够有效解决这些限制的高级检测模型的需求。在此,本文介绍了一种名为SOCA-YOLO的增强YOLOv9(You Only Look Once v9)模型,该模型集成了小对象聚焦卷积模块和注意机制,以提高检测性能以应对挑战。SOCA-YOLO框架首先通过图像恢复技术构建高分辨率侧边扫描声纳图像增强管道,提取微尺度目标的细粒度特征。随后,引入SPDConv (Space-to-Depth Convolution)模块对特征提取网络进行优化,有效地保留了小目标的判别特征。此外,该模型集成了标准化的CBAM (Convolutional Block Attention Module)注意机制,实现了对声纳图像中小目标显著区域的自适应聚焦,显著提高了复杂水下环境下的检测鲁棒性。最后,在公共侧扫声纳图像数据集圆柱体2上对该模型进行了验证。实验结果表明,SOCA-YOLO的准确率和召回率分别为71.8%和72.7%,mAP50为74.3%。它优于目前最先进的目标检测方法YOLO11,以及原来的YOLOv9。具体来说,我们的模型在mAP50方面分别超过YOLO11和YOLOv9 2.3%和6.5%。因此,SOCA-YOLO模型为侧扫声纳图像中的水下小目标检测提供了一种新的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Marine Science
Frontiers in Marine Science Agricultural and Biological Sciences-Aquatic Science
CiteScore
5.10
自引率
16.20%
发文量
2443
审稿时长
14 weeks
期刊介绍: Frontiers in Marine Science publishes rigorously peer-reviewed research that advances our understanding of all aspects of the environment, biology, ecosystem functioning and human interactions with the oceans. Field Chief Editor Carlos M. Duarte at King Abdullah University of Science and Technology Thuwal is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, policy makers and the public worldwide. With the human population predicted to reach 9 billion people by 2050, it is clear that traditional land resources will not suffice to meet the demand for food or energy, required to support high-quality livelihoods. As a result, the oceans are emerging as a source of untapped assets, with new innovative industries, such as aquaculture, marine biotechnology, marine energy and deep-sea mining growing rapidly under a new era characterized by rapid growth of a blue, ocean-based economy. The sustainability of the blue economy is closely dependent on our knowledge about how to mitigate the impacts of the multiple pressures on the ocean ecosystem associated with the increased scale and diversification of industry operations in the ocean and global human pressures on the environment. Therefore, Frontiers in Marine Science particularly welcomes the communication of research outcomes addressing ocean-based solutions for the emerging challenges, including improved forecasting and observational capacities, understanding biodiversity and ecosystem problems, locally and globally, effective management strategies to maintain ocean health, and an improved capacity to sustainably derive resources from the oceans.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信