MambaHSISR: Mamba Hyperspectral Image Super-Resolution

IF 8.6 1区 地球科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Yinghao Xu;Hao Wang;Fei Zhou;Chunbo Luo;Xin Sun;Susanto Rahardja;Peng Ren
{"title":"MambaHSISR: Mamba Hyperspectral Image Super-Resolution","authors":"Yinghao Xu;Hao Wang;Fei Zhou;Chunbo Luo;Xin Sun;Susanto Rahardja;Peng Ren","doi":"10.1109/TGRS.2025.3560632","DOIUrl":null,"url":null,"abstract":"One of the main challenges facing hyperspectral image super-resolution is the complex high-dimensional data processing. Mamba leverages its ability to model long-range dependencies of linear complexity to capture the global spatial and spectral information of high-dimensional data while maintaining linear complexity. However, its visual state space equation mainly focuses on the band dimension mapping of the image, while ignoring the modeling of the spatial dimension. To overcome this limitation, we develop a Mamba hyperspectral image super-resolution framework, which comprises three essential components. The first component, i.e., the spatial Mamba subnetwork, models the spatial dimensions of hyperspectral data. It captures long-range dependencies in the pixel space, thereby integrating global spatial information into the framework. The second component, i.e., the spectral Mamba subnetwork, serves to capture long-range spectral dependencies. The third component, i.e., reconstruction, generates hyperspectral images with rich spatial and spectral details through pixel interpolation. Our Mamba framework fully develops the potential of the Mamba model in hyperspectral image super-resolution, significantly enhancing the restoration quality and accuracy of hyperspectral images. Extensive experiments on the Houston and QUST-1 datasets show that our framework outperforms state-of-the-art methods in both quantitative metrics and visual quality across diverse scenarios. We release our source code at <uri>https://gitee.com/xu_yinghao/MambaHSISR</uri> for public evaluations.","PeriodicalId":13213,"journal":{"name":"IEEE Transactions on Geoscience and Remote Sensing","volume":"63 ","pages":"1-16"},"PeriodicalIF":8.6000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Geoscience and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10965814/","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

One of the main challenges facing hyperspectral image super-resolution is the complex high-dimensional data processing. Mamba leverages its ability to model long-range dependencies of linear complexity to capture the global spatial and spectral information of high-dimensional data while maintaining linear complexity. However, its visual state space equation mainly focuses on the band dimension mapping of the image, while ignoring the modeling of the spatial dimension. To overcome this limitation, we develop a Mamba hyperspectral image super-resolution framework, which comprises three essential components. The first component, i.e., the spatial Mamba subnetwork, models the spatial dimensions of hyperspectral data. It captures long-range dependencies in the pixel space, thereby integrating global spatial information into the framework. The second component, i.e., the spectral Mamba subnetwork, serves to capture long-range spectral dependencies. The third component, i.e., reconstruction, generates hyperspectral images with rich spatial and spectral details through pixel interpolation. Our Mamba framework fully develops the potential of the Mamba model in hyperspectral image super-resolution, significantly enhancing the restoration quality and accuracy of hyperspectral images. Extensive experiments on the Houston and QUST-1 datasets show that our framework outperforms state-of-the-art methods in both quantitative metrics and visual quality across diverse scenarios. We release our source code at https://gitee.com/xu_yinghao/MambaHSISR for public evaluations.
曼巴hsisr:曼巴高光谱图像超分辨率
复杂的高维数据处理是高光谱图像超分辨率面临的主要挑战之一。Mamba利用其模拟线性复杂性的长期依赖关系的能力,在保持线性复杂性的同时捕获高维数据的全球空间和光谱信息。然而,其视觉状态空间方程主要关注图像的频带维度映射,而忽略了空间维度的建模。为了克服这一限制,我们开发了一个曼巴高光谱图像超分辨率框架,它包括三个基本组成部分。第一个分量,即空间曼巴子网络,对高光谱数据的空间维度进行建模。它捕获像素空间中的远程依赖关系,从而将全局空间信息集成到框架中。第二个组件,即频谱曼巴子网,用于捕获远程频谱依赖关系。第三部分是重建,通过像素插值生成具有丰富空间和光谱细节的高光谱图像。我们的曼巴框架充分发挥了曼巴模型在高光谱图像超分辨率方面的潜力,显著提高了高光谱图像的恢复质量和精度。在休斯顿和QUST-1数据集上进行的大量实验表明,我们的框架在不同场景下的定量指标和视觉质量方面都优于最先进的方法。我们在https://gitee.com/xu_yinghao/MambaHSISR上发布源代码以供公众评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Geoscience and Remote Sensing
IEEE Transactions on Geoscience and Remote Sensing 工程技术-地球化学与地球物理
CiteScore
11.50
自引率
28.00%
发文量
1912
审稿时长
4.0 months
期刊介绍: IEEE Transactions on Geoscience and Remote Sensing (TGRS) is a monthly publication that focuses on the theory, concepts, and techniques of science and engineering as applied to sensing the land, oceans, atmosphere, and space; and the processing, interpretation, and dissemination of this information.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信