Radiation-magnetohydrodynamics with MPI-AMRVAC using flux-limited diffusion

IF 5.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
N. Narechania, R. Keppens, A. ud-Doula, N. Moens, J. Sundqvist
{"title":"Radiation-magnetohydrodynamics with MPI-AMRVAC using flux-limited diffusion","authors":"N. Narechania, R. Keppens, A. ud-Doula, N. Moens, J. Sundqvist","doi":"10.1051/0004-6361/202452208","DOIUrl":null,"url":null,"abstract":"<i>Context.<i/> Radiation plays a significant role in solar and astrophysical environments, as it may constitute a sizable fraction of the energy density, momentum flux, and total pressure. Modeling the dynamic interaction between radiation and magnetized plasmas in such environments is an intricate and computationally costly task.<i>Aims.<i/> The goal of this work is to demonstrate the capabilities of the open-source parallel, block-adaptive computational framework MPI-AMRVAC in solving equations of radiation-magnetohydrodynamics (RMHD) and to present benchmark test cases relevant for radiation-dominated magnetized plasmas.<i>Methods.<i/> We combined the existing magnetohydrodynamics (MHD) and flux-limited diffusion (FLD) radiative-hydrodynamics physics modules to solve the equations of RMHD on block-adaptive finite volume Cartesian meshes in any dimensionality.<i>Results.<i/> We introduce and validate several benchmark test cases, such as steady radiative MHD shocks, radiation-damped linear MHD waves, radiation-modified Riemann problems, and a multi-dimensional radiative magnetoconvection case. We recall the basic governing Rankine-Hugoniot relations for shocks and the dispersion relation for linear MHD waves in the presence of optically thick radiation fields where the diffusion limit is reached. The RMHD system allows for eight linear wave types, where the classical seven-wave MHD picture (entropy and three wave pairs for slow, Alfvén and fast) is augmented with a radiative diffusion mode.<i>Conclusions.<i/> The MPI-AMRVAC code now has the capability to perform multidimensional RMHD simulations with mesh adaptation, making it well suited for larger scientific applications studying magnetized matter-radiation interactions in solar and stellar interiors and atmospheres.","PeriodicalId":8571,"journal":{"name":"Astronomy & Astrophysics","volume":"74 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy & Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/0004-6361/202452208","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Context. Radiation plays a significant role in solar and astrophysical environments, as it may constitute a sizable fraction of the energy density, momentum flux, and total pressure. Modeling the dynamic interaction between radiation and magnetized plasmas in such environments is an intricate and computationally costly task.Aims. The goal of this work is to demonstrate the capabilities of the open-source parallel, block-adaptive computational framework MPI-AMRVAC in solving equations of radiation-magnetohydrodynamics (RMHD) and to present benchmark test cases relevant for radiation-dominated magnetized plasmas.Methods. We combined the existing magnetohydrodynamics (MHD) and flux-limited diffusion (FLD) radiative-hydrodynamics physics modules to solve the equations of RMHD on block-adaptive finite volume Cartesian meshes in any dimensionality.Results. We introduce and validate several benchmark test cases, such as steady radiative MHD shocks, radiation-damped linear MHD waves, radiation-modified Riemann problems, and a multi-dimensional radiative magnetoconvection case. We recall the basic governing Rankine-Hugoniot relations for shocks and the dispersion relation for linear MHD waves in the presence of optically thick radiation fields where the diffusion limit is reached. The RMHD system allows for eight linear wave types, where the classical seven-wave MHD picture (entropy and three wave pairs for slow, Alfvén and fast) is augmented with a radiative diffusion mode.Conclusions. The MPI-AMRVAC code now has the capability to perform multidimensional RMHD simulations with mesh adaptation, making it well suited for larger scientific applications studying magnetized matter-radiation interactions in solar and stellar interiors and atmospheres.
MPI-AMRVAC的磁限扩散辐射磁流体动力学
上下文。辐射在太阳和天体物理环境中扮演着重要的角色,因为它可能构成能量密度、动量通量和总压力的相当大的一部分。在这种环境中对辐射和磁化等离子体之间的动态相互作用进行建模是一项复杂且计算成本高的任务。这项工作的目标是展示开源并行、块自适应计算框架MPI-AMRVAC在求解辐射磁流体动力学(RMHD)方程方面的能力,并提供与辐射主导磁化等离子体相关的基准测试用例。结合现有的磁流体力学(MHD)和通量限制扩散(FLD)辐射流体力学物理模块,在任意维度的块自适应有限体积笛卡尔网格上求解了磁流体动力学方程。我们介绍并验证了几个基准测试案例,如稳定辐射MHD冲击、辐射阻尼线性MHD波、辐射修正黎曼问题和多维辐射磁对流案例。我们回顾了激波的基本支配rankne - hugoniot关系,以及在达到扩散极限的光学厚辐射场存在下线性MHD波的色散关系。RMHD系统允许八种线性波类型,其中经典的七波MHD图像(熵和三波对分别为慢,alfv和快速)被辐射扩散模式所增强。MPI-AMRVAC代码现在具有通过网格自适应执行多维RMHD模拟的能力,使其非常适合于研究太阳和恒星内部和大气中磁化物质辐射相互作用的大型科学应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Astronomy & Astrophysics
Astronomy & Astrophysics 地学天文-天文与天体物理
CiteScore
10.20
自引率
27.70%
发文量
2105
审稿时长
1-2 weeks
期刊介绍: Astronomy & Astrophysics is an international Journal that publishes papers on all aspects of astronomy and astrophysics (theoretical, observational, and instrumental) independently of the techniques used to obtain the results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信