An automatic detection method for small size dwarf galaxy candidates

IF 5.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Haifeng Yang, Boyu Zhang, Jianghui Cai, Han Qu, Aiyu Zheng, Jing Hao, Xin Chen, Xujun Zhao, Yaling Xun
{"title":"An automatic detection method for small size dwarf galaxy candidates","authors":"Haifeng Yang, Boyu Zhang, Jianghui Cai, Han Qu, Aiyu Zheng, Jing Hao, Xin Chen, Xujun Zhao, Yaling Xun","doi":"10.1051/0004-6361/202453042","DOIUrl":null,"url":null,"abstract":"The missing satellite problem remains a central issue of the Lambda cold dark matter (ΛCDM) model. On a small scale, the number of observed dwarf galaxies is still fewer than the number predicted by existing theories. Therefore, finding fainter dwarf galaxies in deeper images is crucial for refining the existing theoretical framework. In this study, we propose an end-to-end automatic identification scheme for small size and faint dwarf galaxies based on the Dark Energy Spectroscopic Instrument (DESI) Legacy Imaging Surveys photometric images, and we provide a batch of dwarf galaxy candidates. We develop a dwarf galaxy automatic detection model, YOLO-DG, based on the YOLOv7 framework, and we achieve a precision of 88.2% and a recall of 89.1% on the test set. We identify 742 251 dwarf galaxy candidates across the entire DESI DR9 footprint using YOLO-DG, with their spectral redshifts concentrated in the range of 0–0.1. The faintest dwarf galaxy candidates detected by YOLO-DG have magnitudes of 31.61, 27.62, and 32.78 mag in the <i>g<i/>, <i>r<i/>, and <i>z<i/> bands, respectively. We identify 95 230 local volume dwarf galaxy candidates, 33 of which are identified based on spectral redshift. The half-light radius of the smallest local volume dwarf galaxy candidate is 0.31 arcsec. Finally, we provide a complete catalogue of local volume dwarf galaxy candidates.","PeriodicalId":8571,"journal":{"name":"Astronomy & Astrophysics","volume":"115 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy & Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/0004-6361/202453042","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The missing satellite problem remains a central issue of the Lambda cold dark matter (ΛCDM) model. On a small scale, the number of observed dwarf galaxies is still fewer than the number predicted by existing theories. Therefore, finding fainter dwarf galaxies in deeper images is crucial for refining the existing theoretical framework. In this study, we propose an end-to-end automatic identification scheme for small size and faint dwarf galaxies based on the Dark Energy Spectroscopic Instrument (DESI) Legacy Imaging Surveys photometric images, and we provide a batch of dwarf galaxy candidates. We develop a dwarf galaxy automatic detection model, YOLO-DG, based on the YOLOv7 framework, and we achieve a precision of 88.2% and a recall of 89.1% on the test set. We identify 742 251 dwarf galaxy candidates across the entire DESI DR9 footprint using YOLO-DG, with their spectral redshifts concentrated in the range of 0–0.1. The faintest dwarf galaxy candidates detected by YOLO-DG have magnitudes of 31.61, 27.62, and 32.78 mag in the g, r, and z bands, respectively. We identify 95 230 local volume dwarf galaxy candidates, 33 of which are identified based on spectral redshift. The half-light radius of the smallest local volume dwarf galaxy candidate is 0.31 arcsec. Finally, we provide a complete catalogue of local volume dwarf galaxy candidates.
小尺寸候选矮星系的自动探测方法
缺失的卫星问题仍然是Lambda冷暗物质(ΛCDM)模型的核心问题。在小范围内,观测到的矮星系的数量仍然少于现有理论预测的数量。因此,在较深的图像中发现较暗的矮星系对于完善现有的理论框架至关重要。在本研究中,我们基于暗能量光谱仪器(DESI)遗留成像巡天(Legacy Imaging Surveys)的光度图像,提出了一种小尺寸、微弱矮星系的端到端自动识别方案,并提供了一批候选矮星系。基于YOLOv7框架,建立了一个矮星系自动检测模型YOLO-DG,在测试集上达到了88.2%的准确率和89.1%的召回率。我们利用YOLO-DG在整个DESI DR9足迹中识别了742 251个候选矮星系,它们的光谱红移集中在0-0.1的范围内。YOLO-DG探测到的最微弱的矮星系候选者在g、r和z波段分别为31.61、27.62和32.78等。我们确定了95230个局部体积矮星系候选星系,其中33个是基于光谱红移确定的。最小局域体积候选矮星系的半光半径为0.31角秒。最后,我们提供了一个完整的本地体积矮星系候选目录。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Astronomy & Astrophysics
Astronomy & Astrophysics 地学天文-天文与天体物理
CiteScore
10.20
自引率
27.70%
发文量
2105
审稿时长
1-2 weeks
期刊介绍: Astronomy & Astrophysics is an international Journal that publishes papers on all aspects of astronomy and astrophysics (theoretical, observational, and instrumental) independently of the techniques used to obtain the results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信