Investigation of Class Separability Within Object Detection Models in Histopathology

Jonas Ammeling;Jonathan Ganz;Frauke Wilm;Katharina Breininger;Marc Aubreville
{"title":"Investigation of Class Separability Within Object Detection Models in Histopathology","authors":"Jonas Ammeling;Jonathan Ganz;Frauke Wilm;Katharina Breininger;Marc Aubreville","doi":"10.1109/TMI.2025.3560134","DOIUrl":null,"url":null,"abstract":"Object detection is one of the most common tasks in histopathological image analysis and generalization is a key requirement for the clinical applicability of deep object detection models. However, traditional evaluation metrics often fail to provide insights into why models fail on certain test cases, especially in the presence of domain shifts. In this work, we propose a novel quantitative method for assessing the discriminative power of a model’s latent space. Our approach, applicable to all object detection models with known local correspondences such as the popular RetinaNet, FCOS, or YOLO approaches, allows tracing discrimination across layers and coordinates. We motivate, adapt, and evaluate two suitable metrics, the generalized discrimination value and the Hellinger distance, and incorporate them into our approach. Through empirical validation on real-world histopathology datasets, we demonstrate the effectiveness of our method in capturing model discrimination properties and providing insights for architectural optimization. This work contributes to bridging the gap between model performance evaluation and understanding the underlying mechanisms influencing model behavior.","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"44 8","pages":"3162-3174"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10965484/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Object detection is one of the most common tasks in histopathological image analysis and generalization is a key requirement for the clinical applicability of deep object detection models. However, traditional evaluation metrics often fail to provide insights into why models fail on certain test cases, especially in the presence of domain shifts. In this work, we propose a novel quantitative method for assessing the discriminative power of a model’s latent space. Our approach, applicable to all object detection models with known local correspondences such as the popular RetinaNet, FCOS, or YOLO approaches, allows tracing discrimination across layers and coordinates. We motivate, adapt, and evaluate two suitable metrics, the generalized discrimination value and the Hellinger distance, and incorporate them into our approach. Through empirical validation on real-world histopathology datasets, we demonstrate the effectiveness of our method in capturing model discrimination properties and providing insights for architectural optimization. This work contributes to bridging the gap between model performance evaluation and understanding the underlying mechanisms influencing model behavior.
组织病理学中目标检测模型中类可分离性的研究
目标检测是组织病理图像分析中最常见的任务之一,而泛化是深度目标检测模型临床适用性的关键要求。然而,传统的评估量度经常不能提供关于为什么模型在某些测试用例上失败的见解,特别是在领域转移的情况下。在这项工作中,我们提出了一种新的定量方法来评估模型的潜在空间的判别能力。我们的方法适用于所有具有已知局部对应关系的目标检测模型,如流行的RetinaNet、FCOS或YOLO方法,允许跨层和坐标跟踪区分。我们激励、调整和评估了两个合适的指标,即广义判别值和海灵格距离,并将它们纳入我们的方法中。通过对真实世界组织病理学数据集的经验验证,我们证明了我们的方法在捕获模型识别属性和为架构优化提供见解方面的有效性。这项工作有助于弥合模型性能评估和理解影响模型行为的潜在机制之间的差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信