Sharon Mugobera, Kyuchul Lee, Jihyuk Jung, Inho Cho, Jang Myoun Ko, Kwang Se Lee
{"title":"Toward design of novel materials for lithium-ion batteries: Aluminium nanoparticle-assisted seaweed-based separator","authors":"Sharon Mugobera, Kyuchul Lee, Jihyuk Jung, Inho Cho, Jang Myoun Ko, Kwang Se Lee","doi":"10.1002/jccs.202400338","DOIUrl":null,"url":null,"abstract":"<p>Separators are a crucial component and play a pivotal role in battery performance and safety. In this study, a cellulose nanofibril separator was prepared from red algae. The generated nanosized cellulose fibrils were used in the preparation of the separator. The produced separator was analyzed for electrochemical performance, thermal stability, and morphology in comparison to the commercial polyethylene (PE) separator. The obtained densely linked nanoporous separator exhibited a capacity retention of 80% over 600 cycles. It had very good wettability and ionic conductivity results due to its excellent hydrophilic nature enhanced by the presence of the hydroxyl groups. The excellent physical properties of the aluminium nanoparticle-assisted seaweed-based separator (ASS) due to the presence of Al<sub>2</sub>O<sub>3</sub>, aided in its resilience to heat and maintained its dimensions. It exhibited greater electrochemical performance compared to the commercial PE. At 2C the discharge specific capacity was at 83 mAh/g for ASS and PE 77 mAh/g. However, the separators both exhibited comparable results at low C-rates. This study offers an achievable option for the production of an effective seaweed-based separator for use in lithium-ion batteries exceptional physical properties.</p>","PeriodicalId":17262,"journal":{"name":"Journal of The Chinese Chemical Society","volume":"72 4","pages":"401-408"},"PeriodicalIF":1.6000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Chinese Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jccs.202400338","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Separators are a crucial component and play a pivotal role in battery performance and safety. In this study, a cellulose nanofibril separator was prepared from red algae. The generated nanosized cellulose fibrils were used in the preparation of the separator. The produced separator was analyzed for electrochemical performance, thermal stability, and morphology in comparison to the commercial polyethylene (PE) separator. The obtained densely linked nanoporous separator exhibited a capacity retention of 80% over 600 cycles. It had very good wettability and ionic conductivity results due to its excellent hydrophilic nature enhanced by the presence of the hydroxyl groups. The excellent physical properties of the aluminium nanoparticle-assisted seaweed-based separator (ASS) due to the presence of Al2O3, aided in its resilience to heat and maintained its dimensions. It exhibited greater electrochemical performance compared to the commercial PE. At 2C the discharge specific capacity was at 83 mAh/g for ASS and PE 77 mAh/g. However, the separators both exhibited comparable results at low C-rates. This study offers an achievable option for the production of an effective seaweed-based separator for use in lithium-ion batteries exceptional physical properties.
期刊介绍:
The Journal of the Chinese Chemical Society was founded by The Chemical Society Located in Taipei in 1954, and is the oldest general chemistry journal in Taiwan. It is strictly peer-reviewed and welcomes review articles, full papers, notes and communications written in English. The scope of the Journal of the Chinese Chemical Society covers all major areas of chemistry: organic chemistry, inorganic chemistry, analytical chemistry, biochemistry, physical chemistry, and materials science.