Dynamic Resource Provisioning in Cloud Computing Using Optimized Wasserstein Deep Convolutional Generative Adversarial Networks

IF 2.5 4区 计算机科学 Q3 TELECOMMUNICATIONS
C. Santhiya, S. Padmavathi
{"title":"Dynamic Resource Provisioning in Cloud Computing Using Optimized Wasserstein Deep Convolutional Generative Adversarial Networks","authors":"C. Santhiya,&nbsp;S. Padmavathi","doi":"10.1002/ett.70128","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Cloud computing (CC) has revolutionized the way resources are managed and delivered by providing scalable, on-demand services. However, dynamic resource provisioning remains a complex challenge due to unpredictable workloads, varying user demands, and the need to maintain cost efficiency. Traditional resource allocation techniques lack the adaptability required to optimize resource usage under dynamic conditions. This manuscript presents a novel approach for dynamic resource provisioning using an Optimized Wasserstein Deep Convolutional Generative Adversarial Network (DRP-WDCGAN-AHBA). Initially, the input data are collected from the Grid Workloads Dataset, which provides a comprehensive representation of workload patterns in cloud environments. The input data undergo rigorous preprocessing using Adaptive Self-Guided Filtering (ASGF) to ensure data quality. Then, Wasserstein Deep Convolutional Generative Adversarial Network (WDCGAN) is used to forecast CPU utilization over specified time intervals of 5, 15, 30, and 60 min. The Adaptive Hybrid Bat Algorithm (AHBA) is employed to optimize resource allocation dynamically and ensure efficient utilization. The proposed DRP-WDCGAN-AHBA model attains 20.36%, 18.63%, and 21.24% lower energy consumption and 16.78%, 23.64%, and 26.32% lower response time when compared with existing models, such as Multi-agent QoS-aware autonomic resource provisioning method BPM in containerized multi-cloud environs for elastic (DRP-QoS-EDSAE), Multi-objective dependent Scheduling Method for Effective Resource Utilization in Cloud Computing (DRP-LS-CSO-ARNN), and Energy-aware fully adaptive resource provisioning in collaborative CPU-FPGA cloud environs: Journal of Parallel and Distributed Computing (EFARP-CPU-FPGA).</p>\n </div>","PeriodicalId":23282,"journal":{"name":"Transactions on Emerging Telecommunications Technologies","volume":"36 4","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Emerging Telecommunications Technologies","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ett.70128","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Cloud computing (CC) has revolutionized the way resources are managed and delivered by providing scalable, on-demand services. However, dynamic resource provisioning remains a complex challenge due to unpredictable workloads, varying user demands, and the need to maintain cost efficiency. Traditional resource allocation techniques lack the adaptability required to optimize resource usage under dynamic conditions. This manuscript presents a novel approach for dynamic resource provisioning using an Optimized Wasserstein Deep Convolutional Generative Adversarial Network (DRP-WDCGAN-AHBA). Initially, the input data are collected from the Grid Workloads Dataset, which provides a comprehensive representation of workload patterns in cloud environments. The input data undergo rigorous preprocessing using Adaptive Self-Guided Filtering (ASGF) to ensure data quality. Then, Wasserstein Deep Convolutional Generative Adversarial Network (WDCGAN) is used to forecast CPU utilization over specified time intervals of 5, 15, 30, and 60 min. The Adaptive Hybrid Bat Algorithm (AHBA) is employed to optimize resource allocation dynamically and ensure efficient utilization. The proposed DRP-WDCGAN-AHBA model attains 20.36%, 18.63%, and 21.24% lower energy consumption and 16.78%, 23.64%, and 26.32% lower response time when compared with existing models, such as Multi-agent QoS-aware autonomic resource provisioning method BPM in containerized multi-cloud environs for elastic (DRP-QoS-EDSAE), Multi-objective dependent Scheduling Method for Effective Resource Utilization in Cloud Computing (DRP-LS-CSO-ARNN), and Energy-aware fully adaptive resource provisioning in collaborative CPU-FPGA cloud environs: Journal of Parallel and Distributed Computing (EFARP-CPU-FPGA).

Abstract Image

基于优化Wasserstein深度卷积生成对抗网络的云计算动态资源配置
云计算(CC)通过提供可伸缩的按需服务,彻底改变了资源的管理和交付方式。然而,由于不可预测的工作负载、不断变化的用户需求以及保持成本效率的需要,动态资源供应仍然是一个复杂的挑战。传统的资源配置技术缺乏在动态条件下优化资源使用的适应性。本文提出了一种使用优化的Wasserstein深度卷积生成对抗网络(DRP-WDCGAN-AHBA)进行动态资源配置的新方法。最初,输入数据是从网格工作负载数据集收集的,该数据集提供了云环境中工作负载模式的全面表示。输入数据经过严格的预处理,采用自适应自导向滤波(ASGF),以确保数据质量。然后,使用Wasserstein深度卷积生成对抗网络(WDCGAN)预测5、15、30和60分钟指定时间间隔内的CPU利用率。采用自适应混合蝙蝠算法(AHBA)动态优化资源分配,保证资源的高效利用。与现有的容器化多云环境下的多智能体qos感知自主资源供给方法BPM (DRP-QoS-EDSAE)、云计算中资源有效利用的多目标依赖调度方法(DRP-LS-CSO-ARNN)、基于多智能体qos感知的自主资源供给方法BPM (DRP-QoS-EDSAE)相比,本文提出的DRP-WDCGAN-AHBA模型能耗降低20.36%、18.63%、21.24%,响应时间降低16.78%、23.64%、26.32%。协同CPU-FPGA云环境中能量感知的全自适应资源配置:并行与分布式计算杂志(EFARP-CPU-FPGA)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.90
自引率
13.90%
发文量
249
期刊介绍: ransactions on Emerging Telecommunications Technologies (ETT), formerly known as European Transactions on Telecommunications (ETT), has the following aims: - to attract cutting-edge publications from leading researchers and research groups around the world - to become a highly cited source of timely research findings in emerging fields of telecommunications - to limit revision and publication cycles to a few months and thus significantly increase attractiveness to publish - to become the leading journal for publishing the latest developments in telecommunications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信