Multiagent Task Allocation for Dynamic Intelligent Space: Auction and Preemption With Ontology Knowledge Graph

IF 1.5 Q3 AUTOMATION & CONTROL SYSTEMS
Wei Li, Jianhang Shang, Guoliang Liu, Zhenhua Liu, Guohui Tian
{"title":"Multiagent Task Allocation for Dynamic Intelligent Space: Auction and Preemption With Ontology Knowledge Graph","authors":"Wei Li,&nbsp;Jianhang Shang,&nbsp;Guoliang Liu,&nbsp;Zhenhua Liu,&nbsp;Guohui Tian","doi":"10.1049/csy2.70013","DOIUrl":null,"url":null,"abstract":"<p>This paper introduces a pioneering dynamic system optimisation for multiagent (DySOMA) framework, revolutionising task scheduling in dynamic intelligent spaces with an emphasis on multirobot systems. The core of DySOMA is an advanced auction-based algorithm coupled with a novel task preemption ranking mechanism, seamlessly integrated with an ontology knowledge graph that dynamically updates. This integration not only enhances the efficiency of task allocation among robots but also significantly improves the adaptability of the system to environmental changes. Compared to other advanced algorithms, the DySOMA algorithm shows significant performance improvements, with its RLB 26.8% higher than that of the best-performing Consensus-Based Parallel Auction and Execution (CBPAE) algorithm at 10 robots and 29.7% higher at 20 robots, demonstrating its superior capability in balancing task loads and optimising task completion times in larger, more complex environments. DySOMA sets a new benchmark for intelligent robot task scheduling, promising significant advancements in the autonomy and flexibility of robotic systems in complex evolving environments.</p>","PeriodicalId":34110,"journal":{"name":"IET Cybersystems and Robotics","volume":"7 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/csy2.70013","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Cybersystems and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/csy2.70013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces a pioneering dynamic system optimisation for multiagent (DySOMA) framework, revolutionising task scheduling in dynamic intelligent spaces with an emphasis on multirobot systems. The core of DySOMA is an advanced auction-based algorithm coupled with a novel task preemption ranking mechanism, seamlessly integrated with an ontology knowledge graph that dynamically updates. This integration not only enhances the efficiency of task allocation among robots but also significantly improves the adaptability of the system to environmental changes. Compared to other advanced algorithms, the DySOMA algorithm shows significant performance improvements, with its RLB 26.8% higher than that of the best-performing Consensus-Based Parallel Auction and Execution (CBPAE) algorithm at 10 robots and 29.7% higher at 20 robots, demonstrating its superior capability in balancing task loads and optimising task completion times in larger, more complex environments. DySOMA sets a new benchmark for intelligent robot task scheduling, promising significant advancements in the autonomy and flexibility of robotic systems in complex evolving environments.

Abstract Image

动态智能空间的多智能体任务分配:基于本体知识图的拍卖与抢占
本文介绍了一个开创性的动态系统优化的多智能体(DySOMA)框架,革命性的任务调度在动态智能空间与多机器人系统的重点。DySOMA的核心是一种先进的基于拍卖的算法,结合了一种新颖的任务抢占排序机制,与动态更新的本体知识图无缝集成。这种集成不仅提高了机器人之间任务分配的效率,而且显著提高了系统对环境变化的适应性。与其他先进算法相比,DySOMA算法表现出显著的性能改进,在10个机器人时,其RLB比性能最佳的基于共识的并行拍卖和执行(CBPAE)算法高出26.8%,在20个机器人时高出29.7%,表明其在更大、更复杂的环境中平衡任务负载和优化任务完成时间的卓越能力。DySOMA为智能机器人任务调度设定了新的基准,有望在复杂进化环境中机器人系统的自主性和灵活性方面取得重大进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Cybersystems and Robotics
IET Cybersystems and Robotics Computer Science-Information Systems
CiteScore
3.70
自引率
0.00%
发文量
31
审稿时长
34 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信