Embedding Mo2O2S2-Bis(thiosemicarbazone) Complexes Into Polyurethane Matrices: Synthesis and Characterization

IF 3.9 3区 化学 Q2 POLYMER SCIENCE
Diana Cebotari, Roa AlChamandi, Yann Molard, Maria Amela-Cortes, Carine Livage, Mohamed Haouas, Jérôme Marrot, Aurelian Gulea, Cyril Gorny, Bruno Fayolle, Sergiu Calancea, Sébastien Floquet
{"title":"Embedding Mo2O2S2-Bis(thiosemicarbazone) Complexes Into Polyurethane Matrices: Synthesis and Characterization","authors":"Diana Cebotari,&nbsp;Roa AlChamandi,&nbsp;Yann Molard,&nbsp;Maria Amela-Cortes,&nbsp;Carine Livage,&nbsp;Mohamed Haouas,&nbsp;Jérôme Marrot,&nbsp;Aurelian Gulea,&nbsp;Cyril Gorny,&nbsp;Bruno Fayolle,&nbsp;Sergiu Calancea,&nbsp;Sébastien Floquet","doi":"10.1002/pol.20240556","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>[Mo<sup>V</sup>\n <sub>2</sub>O<sub>2</sub>S<sub>2</sub>]<sup>2+</sup>-based thiosemicarbazone complexes are an interesting family of molecules, which can display various biological properties. However, in order to develop applications, it is necessary to shape this type of complex, in polymer matrices for example. In this article, we report the synthesis of a series of 16 composite materials corresponding to the incorporation of [(Mo<sub>2</sub>O<sub>2</sub>S<sub>2</sub>)<sub>\n <i>n</i>\n </sub>(L<sup>1–6</sup>)<sub>\n <i>n</i>\n </sub>] (<i>n</i> = 1, 2) bis-thiosemicarbazones complexes in a polyurethane matrix. These composites are described as [Mo<sup>V</sup>\n <sub>2</sub>O<sub>2</sub>S<sub>2</sub>]<sup>2+</sup>–thiosemicarbazone-based polyurethanes and denoted PU-[(Mo<sub>2</sub>O<sub>2</sub>S<sub>2</sub>)<sub>\n <i>n</i>\n </sub>(L<sup>1–6</sup>)<sub>\n <i>n</i>\n </sub>] (<i>n</i> = 1, 2). Various [(Mo<sub>2</sub>O<sub>2</sub>S<sub>2</sub>)<sub>\n <i>n</i>\n </sub>(L<sup>1–6</sup>)<sub>\n <i>n</i>\n </sub>]–bis-thiosemicarbazone complexes were used including di- or tetranuclear structures with different numbers of uncoordinated amino and hydroxyl groups and alkyl substituents on the ligands L<sup>\n <i>i</i>\n </sup> (<i>i</i> = 1–6). The composite materials obtained are studied in depth by SEM–EDX, FT-IR, NMR, TGA, and DSC to understand the organization of polymer chains and complexes within the materials and to highlight certain changes in physical properties induced by the nature of the complexes. The complexes are homogeneously distributed within the polymer matrices and the embedding of these complexes seems to be mainly due to hydrogen bonding networks. Nevertheless, these H-bond networks are strong enough to provoke modification of the physical properties of the polymers in terms of thermal stability or flexibility.</p>\n </div>","PeriodicalId":16888,"journal":{"name":"Journal of Polymer Science","volume":"63 8","pages":"1760-1773"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pol.20240556","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

[MoV 2O2S2]2+-based thiosemicarbazone complexes are an interesting family of molecules, which can display various biological properties. However, in order to develop applications, it is necessary to shape this type of complex, in polymer matrices for example. In this article, we report the synthesis of a series of 16 composite materials corresponding to the incorporation of [(Mo2O2S2) n (L1–6) n ] (n = 1, 2) bis-thiosemicarbazones complexes in a polyurethane matrix. These composites are described as [MoV 2O2S2]2+–thiosemicarbazone-based polyurethanes and denoted PU-[(Mo2O2S2) n (L1–6) n ] (n = 1, 2). Various [(Mo2O2S2) n (L1–6) n ]–bis-thiosemicarbazone complexes were used including di- or tetranuclear structures with different numbers of uncoordinated amino and hydroxyl groups and alkyl substituents on the ligands L i (i = 1–6). The composite materials obtained are studied in depth by SEM–EDX, FT-IR, NMR, TGA, and DSC to understand the organization of polymer chains and complexes within the materials and to highlight certain changes in physical properties induced by the nature of the complexes. The complexes are homogeneously distributed within the polymer matrices and the embedding of these complexes seems to be mainly due to hydrogen bonding networks. Nevertheless, these H-bond networks are strong enough to provoke modification of the physical properties of the polymers in terms of thermal stability or flexibility.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Polymer Science
Journal of Polymer Science POLYMER SCIENCE-
CiteScore
6.30
自引率
5.90%
发文量
264
期刊介绍: Journal of Polymer Research provides a forum for the prompt publication of articles concerning the fundamental and applied research of polymers. Its great feature lies in the diversity of content which it encompasses, drawing together results from all aspects of polymer science and technology. As polymer research is rapidly growing around the globe, the aim of this journal is to establish itself as a significant information tool not only for the international polymer researchers in academia but also for those working in industry. The scope of the journal covers a wide range of the highly interdisciplinary field of polymer science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信