Zekun Xu;Zhaoming Zhang;Guojin He;Shuaizhang Zhang;Tengfei Long;Guizhou Wang
{"title":"Adaptive Early Wildfire Monitoring Based on Spatiotemporal Prediction and Himawari 8/9","authors":"Zekun Xu;Zhaoming Zhang;Guojin He;Shuaizhang Zhang;Tengfei Long;Guizhou Wang","doi":"10.1109/JSTARS.2025.3554892","DOIUrl":null,"url":null,"abstract":"The rapid advancement of deep learning (DL) technology significantly enhances early forest fire detection methods. However, traditional approaches often rely on fixed thresholds and supervised learning techniques, which may fail to account for the complex spatiotemporal dynamics associated with forest fire events. To overcome this limitation, an adaptive DL model is proposed and specifically designed for early forest fire monitoring. This model integrates Stacking ConvLSTM to forecast mid-infrared brightness temperatures and employs a nonparametric dynamic thresholding method based on Otsu's algorithm for spatiotemporal anomaly detection, facilitating the identification of potential hotspots. By effectively capturing complex dependencies within spatiotemporal dimensions, this method improves detection accuracy. Furthermore, high-confidence early fire points are determined through dual-band analysis and land cover detection. Comparative experiments utilizing Himawari-8/9 satellite data reveal that the proposed method outperforms traditional techniques as well as the latest temporal methods, achieving an accuracy of 0.995, precision of 0.985, recall of 0.946, and an F1 score of 0.965. In addition, our method demonstrates an average fire detection delay of just 7 min and an average runtime of 71 s, underscoring its effectiveness in early forest fire detection. This approach serves as a robust tool for enhancing forest fire monitoring systems, offering significant implications for reducing response times and mitigating fire-related damages.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"18 ","pages":"9396-9408"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10938890","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10938890/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid advancement of deep learning (DL) technology significantly enhances early forest fire detection methods. However, traditional approaches often rely on fixed thresholds and supervised learning techniques, which may fail to account for the complex spatiotemporal dynamics associated with forest fire events. To overcome this limitation, an adaptive DL model is proposed and specifically designed for early forest fire monitoring. This model integrates Stacking ConvLSTM to forecast mid-infrared brightness temperatures and employs a nonparametric dynamic thresholding method based on Otsu's algorithm for spatiotemporal anomaly detection, facilitating the identification of potential hotspots. By effectively capturing complex dependencies within spatiotemporal dimensions, this method improves detection accuracy. Furthermore, high-confidence early fire points are determined through dual-band analysis and land cover detection. Comparative experiments utilizing Himawari-8/9 satellite data reveal that the proposed method outperforms traditional techniques as well as the latest temporal methods, achieving an accuracy of 0.995, precision of 0.985, recall of 0.946, and an F1 score of 0.965. In addition, our method demonstrates an average fire detection delay of just 7 min and an average runtime of 71 s, underscoring its effectiveness in early forest fire detection. This approach serves as a robust tool for enhancing forest fire monitoring systems, offering significant implications for reducing response times and mitigating fire-related damages.
期刊介绍:
The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.