Neuromorphic Wireless Split Computing With Multi-Level Spikes

Dengyu Wu;Jiechen Chen;Bipin Rajendran;H. Vincent Poor;Osvaldo Simeone
{"title":"Neuromorphic Wireless Split Computing With Multi-Level Spikes","authors":"Dengyu Wu;Jiechen Chen;Bipin Rajendran;H. Vincent Poor;Osvaldo Simeone","doi":"10.1109/TMLCN.2025.3556634","DOIUrl":null,"url":null,"abstract":"Inspired by biological processes, neuromorphic computing leverages spiking neural networks (SNNs) to perform inference tasks, offering significant efficiency gains for workloads involving sequential data. Recent advances in hardware and software have shown that embedding a small payload within each spike exchanged between spiking neurons can enhance inference accuracy without increasing energy consumption. To scale neuromorphic computing to larger workloads, split computing—where an SNN is partitioned across two devices—is a promising solution. In such architectures, the device hosting the initial layers must transmit information about the spikes generated by its output neurons to the second device. This establishes a trade-off between the benefits of multi-level spikes, which carry additional payload information, and the communication resources required for transmitting extra bits between devices. This paper presents the first comprehensive study of a neuromorphic wireless split computing architecture that employs multi-level SNNs. We propose digital and analog modulation schemes for an orthogonal frequency division multiplexing (OFDM) radio interface to enable efficient communication. Simulation and experimental results using software-defined radios reveal performance improvements achieved by multi-level SNN models and provide insights into the optimal payload size as a function of the connection quality between the transmitter and receiver.","PeriodicalId":100641,"journal":{"name":"IEEE Transactions on Machine Learning in Communications and Networking","volume":"3 ","pages":"502-516"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10946192","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Machine Learning in Communications and Networking","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10946192/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Inspired by biological processes, neuromorphic computing leverages spiking neural networks (SNNs) to perform inference tasks, offering significant efficiency gains for workloads involving sequential data. Recent advances in hardware and software have shown that embedding a small payload within each spike exchanged between spiking neurons can enhance inference accuracy without increasing energy consumption. To scale neuromorphic computing to larger workloads, split computing—where an SNN is partitioned across two devices—is a promising solution. In such architectures, the device hosting the initial layers must transmit information about the spikes generated by its output neurons to the second device. This establishes a trade-off between the benefits of multi-level spikes, which carry additional payload information, and the communication resources required for transmitting extra bits between devices. This paper presents the first comprehensive study of a neuromorphic wireless split computing architecture that employs multi-level SNNs. We propose digital and analog modulation schemes for an orthogonal frequency division multiplexing (OFDM) radio interface to enable efficient communication. Simulation and experimental results using software-defined radios reveal performance improvements achieved by multi-level SNN models and provide insights into the optimal payload size as a function of the connection quality between the transmitter and receiver.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信