{"title":"Coastal Wetlands Classification and Carbon Storage Estimation: A Case Study of the Region Surrounding the South China Sea","authors":"Guanglin Lai;Zhi He;Chengle Zhou;Youwei Wang","doi":"10.1109/JSTARS.2025.3549480","DOIUrl":null,"url":null,"abstract":"Coastal wetlands are typical carbon sinks and play a crucial role in achieving global carbon neutrality goals. The region surrounding the South China Sea (SCS) contains abundant coastal wetland resources and strong carbon sequestration capabilities, which can be effectively assessed by the well-known integrated valuation of ecosystem services and tradeoffs (InVEST) model. InVEST requires accurate spatial distribution information of wetlands as input data, which can be obtained by coastal wetlands classification methods. Among all classification methods, deep learning (DL) is the state-of-the-art. However, designing a DL method that is both easily trainable and suitable for large-scale coastal wetland classification remains a challenging issue. This article proposes a novel DL method and a new carbon correction strategy for large-scale coastal wetland classification and carbon storage assessment. First, the remote sensing (RS) data from the study area is acquired and preprocessed by the Google Earth Engine. Second, the Otsu algorithm and decision tree are used to extract the maximum wetland extent. Third, a multidirectional squeeze attention network (MDSAN) is proposed for large-scale coastal wetland classification. Finally, a new strategy is designed to correct measured carbon pool data using meteorological data. Experiments show that the proposed wetland classification method achieves an overall accuracy and Kappa coefficient of 0.9500 and 0.9411, respectively, demonstrating the effectiveness of MDSAN. Furthermore, the estimated carbon storage in the mangroves, tidal-flats, and swamps surrounding the SCS is approximately 1.2112<inline-formula><tex-math>$\\boldsymbol{\\times }10\\boldsymbol{^{9}}$</tex-math></inline-formula> t, 6.9138<inline-formula><tex-math>$\\boldsymbol{\\times }10\\boldsymbol{^{7}}$</tex-math></inline-formula> t, and 1.6980<inline-formula><tex-math>$\\boldsymbol{\\times }10\\boldsymbol{^{8}}$</tex-math></inline-formula> t, respectively, revealing the carbon distribution pattern in the region.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"18 ","pages":"9464-9482"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10918765","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10918765/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Coastal wetlands are typical carbon sinks and play a crucial role in achieving global carbon neutrality goals. The region surrounding the South China Sea (SCS) contains abundant coastal wetland resources and strong carbon sequestration capabilities, which can be effectively assessed by the well-known integrated valuation of ecosystem services and tradeoffs (InVEST) model. InVEST requires accurate spatial distribution information of wetlands as input data, which can be obtained by coastal wetlands classification methods. Among all classification methods, deep learning (DL) is the state-of-the-art. However, designing a DL method that is both easily trainable and suitable for large-scale coastal wetland classification remains a challenging issue. This article proposes a novel DL method and a new carbon correction strategy for large-scale coastal wetland classification and carbon storage assessment. First, the remote sensing (RS) data from the study area is acquired and preprocessed by the Google Earth Engine. Second, the Otsu algorithm and decision tree are used to extract the maximum wetland extent. Third, a multidirectional squeeze attention network (MDSAN) is proposed for large-scale coastal wetland classification. Finally, a new strategy is designed to correct measured carbon pool data using meteorological data. Experiments show that the proposed wetland classification method achieves an overall accuracy and Kappa coefficient of 0.9500 and 0.9411, respectively, demonstrating the effectiveness of MDSAN. Furthermore, the estimated carbon storage in the mangroves, tidal-flats, and swamps surrounding the SCS is approximately 1.2112$\boldsymbol{\times }10\boldsymbol{^{9}}$ t, 6.9138$\boldsymbol{\times }10\boldsymbol{^{7}}$ t, and 1.6980$\boldsymbol{\times }10\boldsymbol{^{8}}$ t, respectively, revealing the carbon distribution pattern in the region.
期刊介绍:
The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.