High-Resolution Remote Sensing Change Detection With Edge-Guided Feature Enhancement

Changyuan You;Nan Wang;Dehui Zhu;Rong Liu;Wei Li
{"title":"High-Resolution Remote Sensing Change Detection With Edge-Guided Feature Enhancement","authors":"Changyuan You;Nan Wang;Dehui Zhu;Rong Liu;Wei Li","doi":"10.1109/LGRS.2025.3555584","DOIUrl":null,"url":null,"abstract":"High-resolution (HR) remote sensing image change detection aims to identify surface changes; however, complex scenes and irregular object edges pose significant challenges to achieving accurate results. Existing methods leverage upsampling, downsampling, or dilated convolution to capture multiscale spatial features and fuse fine-scale details into coarse-scale features using concatenation, addition, or skip connections to enhance edge information. However, these direct fusion operations can cause fine edge details to be overshadowed by dominant regional features. To address this, we propose an edge-guided change detection (EGCD) network that improves edge preservation and detection accuracy. In the encoding stage, a region-edge feature extraction module (REM) is introduced to extract regional and edge features in parallel using a two-branch structure for each temporal image. The edge and regional features from the two temporal images are then fused independently via a separation feature fusion (SFF) module, preventing fine edge details from being dominated by regional features. In the decoding stage, a edge enhancement upsampling (EEU) module uses edge features to guide the reconstruction of regional features, ensuring precise boundary delineation. Experiments on public datasets validate the effectiveness and robustness of the proposed network.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10945436/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

High-resolution (HR) remote sensing image change detection aims to identify surface changes; however, complex scenes and irregular object edges pose significant challenges to achieving accurate results. Existing methods leverage upsampling, downsampling, or dilated convolution to capture multiscale spatial features and fuse fine-scale details into coarse-scale features using concatenation, addition, or skip connections to enhance edge information. However, these direct fusion operations can cause fine edge details to be overshadowed by dominant regional features. To address this, we propose an edge-guided change detection (EGCD) network that improves edge preservation and detection accuracy. In the encoding stage, a region-edge feature extraction module (REM) is introduced to extract regional and edge features in parallel using a two-branch structure for each temporal image. The edge and regional features from the two temporal images are then fused independently via a separation feature fusion (SFF) module, preventing fine edge details from being dominated by regional features. In the decoding stage, a edge enhancement upsampling (EEU) module uses edge features to guide the reconstruction of regional features, ensuring precise boundary delineation. Experiments on public datasets validate the effectiveness and robustness of the proposed network.
利用边缘引导特征增强技术进行高分辨率遥感变化检测
高分辨率(HR)遥感图像变化检测的目的是识别地表变化;然而,复杂的场景和不规则的物体边缘给获得准确的结果带来了巨大的挑战。现有方法利用上采样、下采样或扩展卷积来捕获多尺度空间特征,并使用串联、加法或跳过连接将精细尺度细节融合到粗尺度特征中以增强边缘信息。然而,这些直接融合操作可能会导致精细的边缘细节被主要的区域特征所掩盖。为了解决这个问题,我们提出了一种边缘引导变化检测(EGCD)网络,提高了边缘保存和检测精度。在编码阶段,引入区域边缘特征提取模块(REM),对每幅时间图像采用双分支结构并行提取区域和边缘特征。然后,通过分离特征融合(SFF)模块将两幅时间图像的边缘和区域特征独立融合,防止精细边缘细节被区域特征主导。在解码阶段,边缘增强上采样(EEU)模块使用边缘特征来指导区域特征的重建,确保精确的边界勾画。在公共数据集上的实验验证了该网络的有效性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信