Moran Ju;Buniu Niu;Mulin Li;Tengkai Mao;Si-nian Jin
{"title":"Toward Better Accuracy-Efficiency Tradeoffs for Oriented SAR Ship Object Detection","authors":"Moran Ju;Buniu Niu;Mulin Li;Tengkai Mao;Si-nian Jin","doi":"10.1109/JSTARS.2025.3555330","DOIUrl":null,"url":null,"abstract":"In oriented synthetic aperture radar (SAR) ship detection task, convolutional neural network based detectors have dramatically improved the detection performance, but enormous parameters make it difficult to realize model lightweighting. Recently, DETR and its variants have demonstrated excellent performance in object detection task, while model construction through linear layers has great potential in terms of model lightweighting. However, DETR-based models are rarely applied to oriented object detection task, while the network structure relies on manual experience and cannot be designed automatically. In this article, we propose a novel neural architecture search based lightweight detector in polar coordinate system with DETR as search space for oriented SAR ship detection, where oriented bounding boxes are encoded and decoded in polar coordinate system to cope with boundary discontinuity problems, and the weight entanglement strategy is adopted to realize automatic and lightweight design of DETR. Meanwhile, we design an oriented multiscale attention to alleviate the problem of sampling a large amount of background due to offset learning. Furthermore, we introduce a downsampling feedforward network to significantly reduce network floating point operations. Finally, we transplant FPDDet head as auxiliary head to improve encoder potential ship feature learning and decoder cross-attention learning. Experimental results show that our models not only achieve DETR lightweighting and real-time detection, but also improve detection performance. Our base models achieve state-of-the-art performance on both RSSDD and RSDD datasets compared to previous best models, with 1.36% and 2.28% improvement in mAP with 32.67 and 32.14 GFLOPs, respectively.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"18 ","pages":"9666-9681"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10944503","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10944503/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In oriented synthetic aperture radar (SAR) ship detection task, convolutional neural network based detectors have dramatically improved the detection performance, but enormous parameters make it difficult to realize model lightweighting. Recently, DETR and its variants have demonstrated excellent performance in object detection task, while model construction through linear layers has great potential in terms of model lightweighting. However, DETR-based models are rarely applied to oriented object detection task, while the network structure relies on manual experience and cannot be designed automatically. In this article, we propose a novel neural architecture search based lightweight detector in polar coordinate system with DETR as search space for oriented SAR ship detection, where oriented bounding boxes are encoded and decoded in polar coordinate system to cope with boundary discontinuity problems, and the weight entanglement strategy is adopted to realize automatic and lightweight design of DETR. Meanwhile, we design an oriented multiscale attention to alleviate the problem of sampling a large amount of background due to offset learning. Furthermore, we introduce a downsampling feedforward network to significantly reduce network floating point operations. Finally, we transplant FPDDet head as auxiliary head to improve encoder potential ship feature learning and decoder cross-attention learning. Experimental results show that our models not only achieve DETR lightweighting and real-time detection, but also improve detection performance. Our base models achieve state-of-the-art performance on both RSSDD and RSDD datasets compared to previous best models, with 1.36% and 2.28% improvement in mAP with 32.67 and 32.14 GFLOPs, respectively.
期刊介绍:
The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.