FactorVQVAE: Discrete latent factor model via Vector Quantized Variational Autoencoder

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Namhyoung Kim, Seung Eun Ock, Jae Wook Song
{"title":"FactorVQVAE: Discrete latent factor model via Vector Quantized Variational Autoencoder","authors":"Namhyoung Kim,&nbsp;Seung Eun Ock,&nbsp;Jae Wook Song","doi":"10.1016/j.knosys.2025.113460","DOIUrl":null,"url":null,"abstract":"<div><div>This study introduces FactorVQVAE, the first integration of the Vector Quantized Variational Autoencoder (VQVAE) into factor modeling, providing a novel framework for predicting cross-sectional stock returns and constructing systematic investment portfolios. The model employs a two-stage architecture to improve the extraction and utilization of latent financial factors. In the first stage, an encoder–decoder-quantizer compresses high-dimensional input data into discrete latent factors through vector quantization, addressing posterior collapse and ensuring distinct representations. In the second stage, an autoregressive Transformer captures sequential dependencies among these latent factors, enabling precise return predictions. Empirical results in the CSI300 and S&amp;P500 markets demonstrate FactorVQVAE’s superior performance. The model achieves the best Rank IC and Rank ICIR scores, surpassing the state-of-the-art latent factor models in varying market conditions. In portfolio evaluations, FactorVQVAE consistently excels in both Top-<span><math><mi>k</mi></math></span> Drop-<span><math><mi>n</mi></math></span> and Long–Short strategies, translating predictive accuracy into robust investment performance. In particular, it delivers the highest risk-adjusted returns, highlighting its ability to balance returns and risks effectively. These findings position FactorVQVAE as a significant advancement in integrating modern deep learning methodologies with financial factor modeling. Its adaptability, robustness, and exceptional performance in portfolio investment establish it as a promising tool for systematic investing and financial analytics.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":"318 ","pages":"Article 113460"},"PeriodicalIF":7.2000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705125005076","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces FactorVQVAE, the first integration of the Vector Quantized Variational Autoencoder (VQVAE) into factor modeling, providing a novel framework for predicting cross-sectional stock returns and constructing systematic investment portfolios. The model employs a two-stage architecture to improve the extraction and utilization of latent financial factors. In the first stage, an encoder–decoder-quantizer compresses high-dimensional input data into discrete latent factors through vector quantization, addressing posterior collapse and ensuring distinct representations. In the second stage, an autoregressive Transformer captures sequential dependencies among these latent factors, enabling precise return predictions. Empirical results in the CSI300 and S&P500 markets demonstrate FactorVQVAE’s superior performance. The model achieves the best Rank IC and Rank ICIR scores, surpassing the state-of-the-art latent factor models in varying market conditions. In portfolio evaluations, FactorVQVAE consistently excels in both Top-k Drop-n and Long–Short strategies, translating predictive accuracy into robust investment performance. In particular, it delivers the highest risk-adjusted returns, highlighting its ability to balance returns and risks effectively. These findings position FactorVQVAE as a significant advancement in integrating modern deep learning methodologies with financial factor modeling. Its adaptability, robustness, and exceptional performance in portfolio investment establish it as a promising tool for systematic investing and financial analytics.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Knowledge-Based Systems
Knowledge-Based Systems 工程技术-计算机:人工智能
CiteScore
14.80
自引率
12.50%
发文量
1245
审稿时长
7.8 months
期刊介绍: Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信