Improving the performance of machine learning algorithms for detection of individual pests and beneficial insects using feature selection techniques

IF 8.2 Q1 AGRICULTURE, MULTIDISCIPLINARY
Rabiu Aminu , Samantha M. Cook , David Ljungberg , Oliver Hensel , Abozar Nasirahmadi
{"title":"Improving the performance of machine learning algorithms for detection of individual pests and beneficial insects using feature selection techniques","authors":"Rabiu Aminu ,&nbsp;Samantha M. Cook ,&nbsp;David Ljungberg ,&nbsp;Oliver Hensel ,&nbsp;Abozar Nasirahmadi","doi":"10.1016/j.aiia.2025.03.008","DOIUrl":null,"url":null,"abstract":"<div><div>To reduce damage caused by insect pests, farmers use insecticides to protect produce from crop pests. This practice leads to high synthetic chemical usage because a large portion of the applied insecticide does not reach its intended target; instead, it may affect non-target organisms and pollute the environment. One approach to mitigating this is through the selective application of insecticides to only those crop plants (or patches of plants) where the insect pests are located, avoiding non-targets and beneficials. The first step to achieve this is the identification of insects on plants and discrimination between pests and beneficial non-targets. However, detecting small-sized individual insects is challenging using image-based machine learning techniques, especially in natural field settings. This paper proposes a method based on explainable artificial intelligence feature selection and machine learning to detect pests and beneficial insects in field crops. An insect-plant dataset reflecting real field conditions was created. It comprises two pest insects—the Colorado potato beetle (CPB, <em>Leptinotarsa decemlineata</em>) and green peach aphid (<em>Myzus persicae</em>)—and the beneficial seven-spot ladybird (<em>Coccinella septempunctata</em>). The specialist herbivore CPB was imaged only on potato plants (<em>Solanum tuberosum</em>) while green peach aphids and seven-spot ladybirds were imaged on three crops: potato, faba bean (<em>Vicia faba)</em>, and sugar beet (<em>Beta vulgaris</em> subsp. <em>vulgaris</em>). This increased dataset diversity, broadening the potential application of the developed method for discriminating between pests and beneficial insects in several crops. The insects were imaged in both laboratory and outdoor settings. Using the GrabCut algorithm, regions of interest in the image were identified before shape, texture, and colour features were extracted from the segmented regions. The concept of explainable artificial intelligence was adopted by incorporating permutation feature importance ranking and Shapley Additive explanations values to identify the feature set that optimized a model's performance while reducing computational complexity. The proposed explainable artificial intelligence feature selection method was compared to conventional feature selection techniques, including mutual information, chi-square coefficient, maximal information coefficient, Fisher separation criterion and variance thresholding. Results showed improved accuracy (92.62 % Random forest, 90.16 % Support vector machine, 83.61 % K-nearest neighbours, and 81.97 % Naïve Bayes) and a reduction in the number of model parameters and memory usage (7.22 <em>×</em> 10<sup>7</sup> Random forest, 6.23 <em>×</em> 10<sup>3</sup> Support vector machine, 3.64 <em>×</em> 10<sup>4</sup> K-nearest neighbours and 1.88 <em>×</em> 10<sup>2</sup> Naïve Bayes) compared to using all features. Prediction and training times were also reduced by approximately half compared to conventional feature selection techniques. This demonstrates a simple machine learning algorithm combined with an ideal feature selection methodology can achieve robust performance comparable to other methods. With feature selection, model performance can be maximized and hardware requirements reduced, which are essential for real-world applications with resource constraints. This research offers a reliable approach towards automatic detection and discrimination of pest and beneficial insects which will facilitate the development of alternative pest control approaches and other targeted pest removal methods that are less harmful to the environment than the broad-scale application of synthetic insecticides.</div></div>","PeriodicalId":52814,"journal":{"name":"Artificial Intelligence in Agriculture","volume":"15 3","pages":"Pages 377-394"},"PeriodicalIF":8.2000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Agriculture","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S258972172500039X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

To reduce damage caused by insect pests, farmers use insecticides to protect produce from crop pests. This practice leads to high synthetic chemical usage because a large portion of the applied insecticide does not reach its intended target; instead, it may affect non-target organisms and pollute the environment. One approach to mitigating this is through the selective application of insecticides to only those crop plants (or patches of plants) where the insect pests are located, avoiding non-targets and beneficials. The first step to achieve this is the identification of insects on plants and discrimination between pests and beneficial non-targets. However, detecting small-sized individual insects is challenging using image-based machine learning techniques, especially in natural field settings. This paper proposes a method based on explainable artificial intelligence feature selection and machine learning to detect pests and beneficial insects in field crops. An insect-plant dataset reflecting real field conditions was created. It comprises two pest insects—the Colorado potato beetle (CPB, Leptinotarsa decemlineata) and green peach aphid (Myzus persicae)—and the beneficial seven-spot ladybird (Coccinella septempunctata). The specialist herbivore CPB was imaged only on potato plants (Solanum tuberosum) while green peach aphids and seven-spot ladybirds were imaged on three crops: potato, faba bean (Vicia faba), and sugar beet (Beta vulgaris subsp. vulgaris). This increased dataset diversity, broadening the potential application of the developed method for discriminating between pests and beneficial insects in several crops. The insects were imaged in both laboratory and outdoor settings. Using the GrabCut algorithm, regions of interest in the image were identified before shape, texture, and colour features were extracted from the segmented regions. The concept of explainable artificial intelligence was adopted by incorporating permutation feature importance ranking and Shapley Additive explanations values to identify the feature set that optimized a model's performance while reducing computational complexity. The proposed explainable artificial intelligence feature selection method was compared to conventional feature selection techniques, including mutual information, chi-square coefficient, maximal information coefficient, Fisher separation criterion and variance thresholding. Results showed improved accuracy (92.62 % Random forest, 90.16 % Support vector machine, 83.61 % K-nearest neighbours, and 81.97 % Naïve Bayes) and a reduction in the number of model parameters and memory usage (7.22 × 107 Random forest, 6.23 × 103 Support vector machine, 3.64 × 104 K-nearest neighbours and 1.88 × 102 Naïve Bayes) compared to using all features. Prediction and training times were also reduced by approximately half compared to conventional feature selection techniques. This demonstrates a simple machine learning algorithm combined with an ideal feature selection methodology can achieve robust performance comparable to other methods. With feature selection, model performance can be maximized and hardware requirements reduced, which are essential for real-world applications with resource constraints. This research offers a reliable approach towards automatic detection and discrimination of pest and beneficial insects which will facilitate the development of alternative pest control approaches and other targeted pest removal methods that are less harmful to the environment than the broad-scale application of synthetic insecticides.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Artificial Intelligence in Agriculture
Artificial Intelligence in Agriculture Engineering-Engineering (miscellaneous)
CiteScore
21.60
自引率
0.00%
发文量
18
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信