Ancestral lineages for a branching annihilating random walk

IF 1.1 2区 数学 Q3 STATISTICS & PROBABILITY
Pascal Oswald
{"title":"Ancestral lineages for a branching annihilating random walk","authors":"Pascal Oswald","doi":"10.1016/j.spa.2025.104648","DOIUrl":null,"url":null,"abstract":"<div><div>We study the ancestral lineages of individuals of a stationary discrete-time branching annihilating random walk (BARW) on the <span><math><mi>d</mi></math></span>-dimensional lattice <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>. Each individual produces a Poissonian number of offspring with mean <span><math><mi>μ</mi></math></span> which then jump independently to a uniformly chosen site with a fixed distance <span><math><mi>R</mi></math></span> of their parent. Should two or more particles jump to the same site, all particles at that site get annihilated. By interpreting the ancestral lineage of such an individual as a random walk in a dynamical random environment, we obtain a law of large numbers and a functional central limit theorem for the ancestral lineage whenever the model parameters satisfy <span><math><mrow><mi>μ</mi><mo>∈</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>R</mi><mo>=</mo><mi>R</mi><mrow><mo>(</mo><mi>μ</mi><mo>)</mo></mrow></mrow></math></span> is large enough.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"187 ","pages":"Article 104648"},"PeriodicalIF":1.1000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414925000894","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We study the ancestral lineages of individuals of a stationary discrete-time branching annihilating random walk (BARW) on the d-dimensional lattice Zd. Each individual produces a Poissonian number of offspring with mean μ which then jump independently to a uniformly chosen site with a fixed distance R of their parent. Should two or more particles jump to the same site, all particles at that site get annihilated. By interpreting the ancestral lineage of such an individual as a random walk in a dynamical random environment, we obtain a law of large numbers and a functional central limit theorem for the ancestral lineage whenever the model parameters satisfy μ(1,e2) and R=R(μ) is large enough.
分支湮灭随机游走的祖先谱系
研究了d维晶格Zd上平稳离散时间分支湮灭随机漫步(BARW)个体的祖先谱系。每个个体产生一个泊松数的后代,其平均值为μ,然后这些后代独立地跳跃到与亲本有固定距离R的均匀选择的位置。如果两个或两个以上的粒子跃迁到同一位置,那么该位置的所有粒子都会湮灭。通过将个体的祖先谱系解释为动态随机环境中的随机漫步,我们得到了当模型参数满足μ∈(1,e2)且R=R(μ)足够大时祖先谱系的一个大数定律和泛函中心极限定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Stochastic Processes and their Applications
Stochastic Processes and their Applications 数学-统计学与概率论
CiteScore
2.90
自引率
7.10%
发文量
180
审稿时长
23.6 weeks
期刊介绍: Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests. Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信