{"title":"Optimal experimental designs for big and small experiments in toxicology with applications to studying hormesis via metaheuristics","authors":"Brian P.H. Wu , Ray-Bing Chen , Weng Kee Wong","doi":"10.1016/j.comtox.2025.100345","DOIUrl":null,"url":null,"abstract":"<div><div>There are theoretical methods for constructing model-based optimal designs for a given design criterion when the sample size is large. Some of these methods may work for certain models or design criteria and some may find the optimal designs only under a restrictive setting. When the sample size is small, the theory-based methods may become invalid and the optimal designs may also not be implementable. Our first goal is to introduce nature-inspired metaheuristics to efficiently find all types of model-based optimal designs. These metaheuristic algorithms, widely used in engineering, computer science, and artificial intelligence, are generally fast and free of stringent assumptions. For our second goal, we introduce an efficient rounding method to produce an implementable, exact design for small-sized experiments based on large-sample optimal designs. To provide toxicologists with easy access to a variety of model-based optimal designs for both large and small experiments, our third goal is to develop a web-based app. This app will generate different types of model-based optimal designs, allow comparisons, and evaluate the efficiency of any design. As an application, we focus on hormesis and find model-based designs for detecting the presence of hormesis, estimating model parameters and estimating the threshold dose. The methodology is not restricted to studying hormesis only and is broadly applicable for designing other studies in toxicology and beyond.</div></div>","PeriodicalId":37651,"journal":{"name":"Computational Toxicology","volume":"34 ","pages":"Article 100345"},"PeriodicalIF":3.1000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Toxicology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468111325000052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
There are theoretical methods for constructing model-based optimal designs for a given design criterion when the sample size is large. Some of these methods may work for certain models or design criteria and some may find the optimal designs only under a restrictive setting. When the sample size is small, the theory-based methods may become invalid and the optimal designs may also not be implementable. Our first goal is to introduce nature-inspired metaheuristics to efficiently find all types of model-based optimal designs. These metaheuristic algorithms, widely used in engineering, computer science, and artificial intelligence, are generally fast and free of stringent assumptions. For our second goal, we introduce an efficient rounding method to produce an implementable, exact design for small-sized experiments based on large-sample optimal designs. To provide toxicologists with easy access to a variety of model-based optimal designs for both large and small experiments, our third goal is to develop a web-based app. This app will generate different types of model-based optimal designs, allow comparisons, and evaluate the efficiency of any design. As an application, we focus on hormesis and find model-based designs for detecting the presence of hormesis, estimating model parameters and estimating the threshold dose. The methodology is not restricted to studying hormesis only and is broadly applicable for designing other studies in toxicology and beyond.
期刊介绍:
Computational Toxicology is an international journal publishing computational approaches that assist in the toxicological evaluation of new and existing chemical substances assisting in their safety assessment. -All effects relating to human health and environmental toxicity and fate -Prediction of toxicity, metabolism, fate and physico-chemical properties -The development of models from read-across, (Q)SARs, PBPK, QIVIVE, Multi-Scale Models -Big Data in toxicology: integration, management, analysis -Implementation of models through AOPs, IATA, TTC -Regulatory acceptance of models: evaluation, verification and validation -From metals, to small organic molecules to nanoparticles -Pharmaceuticals, pesticides, foods, cosmetics, fine chemicals -Bringing together the views of industry, regulators, academia, NGOs