Sodium chloride template-assisted synthesis of silicon/carbon anode nanocomposites for lithium-ion batteries

Maziar Ashuri, Qianran He, Leon Shaw
{"title":"Sodium chloride template-assisted synthesis of silicon/carbon anode nanocomposites for lithium-ion batteries","authors":"Maziar Ashuri,&nbsp;Qianran He,&nbsp;Leon Shaw","doi":"10.1016/j.fub.2025.100069","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid capacity decay of silicon anodes is a significant challenge in the effort to replace graphite in lithium-ion batteries. To address this issue, it is crucial to integrate sufficient engineered void space within the silicon composites and to effectively and uniformly coat the particles with carbon. Herein, we propose a straightforward method to address both concerns. The template synthesis approach, utilizing sodium chloride as a sacrificial template, creates an internal void network, while a double carbon coating with pyrrole enhances electrical conductivity and stabilizes the microstructure. A single pyrrole carbon coating on the silicon anode yields a delithiation capacity of 480 mAh g<sup>−1</sup>. However, when an additional carbon layer is applied, the delithiation capacity increases significantly, reaching up to 670 mAh g<sup>−1</sup> after 180 cycles. This indicates that the additional carbon layer not only enhances the electrical properties but also provides structural support, resulting in improved performance and longevity of the silicon anode. The synthesis strategy presented here has the potential to significantly improve the performance of silicon-based anodes, paving the way for the development of advanced silicon materials for the next generation of lithium-ion batteries. This method offers a promising solution to one of the major challenges in battery technology, providing a pathway towards higher capacity and more stable battery systems.</div></div>","PeriodicalId":100560,"journal":{"name":"Future Batteries","volume":"6 ","pages":"Article 100069"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Batteries","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950264025000486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid capacity decay of silicon anodes is a significant challenge in the effort to replace graphite in lithium-ion batteries. To address this issue, it is crucial to integrate sufficient engineered void space within the silicon composites and to effectively and uniformly coat the particles with carbon. Herein, we propose a straightforward method to address both concerns. The template synthesis approach, utilizing sodium chloride as a sacrificial template, creates an internal void network, while a double carbon coating with pyrrole enhances electrical conductivity and stabilizes the microstructure. A single pyrrole carbon coating on the silicon anode yields a delithiation capacity of 480 mAh g−1. However, when an additional carbon layer is applied, the delithiation capacity increases significantly, reaching up to 670 mAh g−1 after 180 cycles. This indicates that the additional carbon layer not only enhances the electrical properties but also provides structural support, resulting in improved performance and longevity of the silicon anode. The synthesis strategy presented here has the potential to significantly improve the performance of silicon-based anodes, paving the way for the development of advanced silicon materials for the next generation of lithium-ion batteries. This method offers a promising solution to one of the major challenges in battery technology, providing a pathway towards higher capacity and more stable battery systems.
氯化钠模板辅助合成锂离子电池硅/碳负极纳米复合材料
硅阳极的快速容量衰减是取代锂离子电池中石墨的一个重大挑战。为了解决这个问题,关键是要在硅复合材料中集成足够的工程空隙空间,并在颗粒上有效而均匀地涂上碳。在此,我们提出一个简单的方法来解决这两个问题。模板合成方法利用氯化钠作为牺牲模板,形成内部空洞网络,而带有吡咯的双碳涂层提高了导电性并稳定了微观结构。在硅阳极上的单吡咯碳涂层产生480 mAh g−1的衰减容量。然而,当添加额外的碳层时,衰减能力显著增加,在180次循环后达到670 mAh g−1。这表明额外的碳层不仅提高了电性能,而且提供了结构支撑,从而提高了硅阳极的性能和寿命。本文提出的合成策略有可能显著提高硅基阳极的性能,为下一代锂离子电池的先进硅材料的开发铺平道路。这种方法为电池技术中的一个主要挑战提供了一个有希望的解决方案,为更高容量和更稳定的电池系统提供了一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信