Javier Petri , Pilar Barcena Barbeira , Martina Pesce , Verónica Xhardez , Rodrigo Laje , Viviana Cotik
{"title":"Low-cost algorithms for clinical notes phenotype classification to enhance epidemiological surveillance: A case study","authors":"Javier Petri , Pilar Barcena Barbeira , Martina Pesce , Verónica Xhardez , Rodrigo Laje , Viviana Cotik","doi":"10.1016/j.jbi.2025.104795","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective:</h3><div>Our study aims to enhance epidemic intelligence through event-based surveillance in an emerging pandemic context. We classified electronic health records (EHRs) from La Rioja, Argentina, focusing on predicting COVID-19-related categories in a scenario with limited disease knowledge, evolving symptoms, non-standardized coding practices, and restricted training data due to privacy issues.</div></div><div><h3>Methods:</h3><div>Using natural language processing techniques, we developed rapid, cost-effective methods suitable for implementation with limited resources. We annotated a corpus for training and testing classification models, ranging from simple logistic regression to more complex fine-tuned transformers.</div></div><div><h3>Results:</h3><div>The transformer-based, Spanish-adapted models BETO Clínico and RoBERTa Clínico, further pre-trained with an unannotated portion of our corpus, were the best-performing models (F1= 88.13% and 87.01%). A simple logistic regression (LR) model ranked third (F1=85.09%), outperforming more complex models like XGBoost and BiLSTM. Data classified as COVID-confirmed using LR and BETO Clínico exhibit stronger time-series Pearson correlation with official COVID-19 case counts from the National Health Surveillance System (SNVS 2.0) in La Rioja province compared to the correlations observed between the International Code of Diseases (ICD-10) codes and the SNVS 2.0 data (0.840, 0.873, and 0.663, p-values <span><math><mrow><mo>≤</mo><mn>3</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>7</mn></mrow></msup></mrow></math></span>). Both models have a good Pearson correlation with ICD-10 codes assigned to the clinical notes for confirmed (0.940 and 0.902) and for suspected cases (0.960 and 0.954), p-values <span><math><mrow><mo>≤</mo><mn>1</mn><mo>.</mo><mn>7</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>18</mn></mrow></msup></mrow></math></span>.</div></div><div><h3>Conclusion:</h3><div>This study shows that simple, resource-efficient methods can achieve results comparable to complex approaches. BETO Clínico and LR strongly correlate with official data, revealing uncoded confirmed cases at the pandemic’s onset. Our results suggest that annotating a smaller set of EHRs and training a simple model may be more cost-effective than manual coding. This points to potentially efficient strategies in public health emergencies, particularly in resource-limited settings, and provides valuable insights for future epidemic response efforts.</div></div>","PeriodicalId":15263,"journal":{"name":"Journal of Biomedical Informatics","volume":"166 ","pages":"Article 104795"},"PeriodicalIF":4.0000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Informatics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532046425000243","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Objective:
Our study aims to enhance epidemic intelligence through event-based surveillance in an emerging pandemic context. We classified electronic health records (EHRs) from La Rioja, Argentina, focusing on predicting COVID-19-related categories in a scenario with limited disease knowledge, evolving symptoms, non-standardized coding practices, and restricted training data due to privacy issues.
Methods:
Using natural language processing techniques, we developed rapid, cost-effective methods suitable for implementation with limited resources. We annotated a corpus for training and testing classification models, ranging from simple logistic regression to more complex fine-tuned transformers.
Results:
The transformer-based, Spanish-adapted models BETO Clínico and RoBERTa Clínico, further pre-trained with an unannotated portion of our corpus, were the best-performing models (F1= 88.13% and 87.01%). A simple logistic regression (LR) model ranked third (F1=85.09%), outperforming more complex models like XGBoost and BiLSTM. Data classified as COVID-confirmed using LR and BETO Clínico exhibit stronger time-series Pearson correlation with official COVID-19 case counts from the National Health Surveillance System (SNVS 2.0) in La Rioja province compared to the correlations observed between the International Code of Diseases (ICD-10) codes and the SNVS 2.0 data (0.840, 0.873, and 0.663, p-values ). Both models have a good Pearson correlation with ICD-10 codes assigned to the clinical notes for confirmed (0.940 and 0.902) and for suspected cases (0.960 and 0.954), p-values .
Conclusion:
This study shows that simple, resource-efficient methods can achieve results comparable to complex approaches. BETO Clínico and LR strongly correlate with official data, revealing uncoded confirmed cases at the pandemic’s onset. Our results suggest that annotating a smaller set of EHRs and training a simple model may be more cost-effective than manual coding. This points to potentially efficient strategies in public health emergencies, particularly in resource-limited settings, and provides valuable insights for future epidemic response efforts.
期刊介绍:
The Journal of Biomedical Informatics reflects a commitment to high-quality original research papers, reviews, and commentaries in the area of biomedical informatics methodology. Although we publish articles motivated by applications in the biomedical sciences (for example, clinical medicine, health care, population health, and translational bioinformatics), the journal emphasizes reports of new methodologies and techniques that have general applicability and that form the basis for the evolving science of biomedical informatics. Articles on medical devices; evaluations of implemented systems (including clinical trials of information technologies); or papers that provide insight into a biological process, a specific disease, or treatment options would generally be more suitable for publication in other venues. Papers on applications of signal processing and image analysis are often more suitable for biomedical engineering journals or other informatics journals, although we do publish papers that emphasize the information management and knowledge representation/modeling issues that arise in the storage and use of biological signals and images. System descriptions are welcome if they illustrate and substantiate the underlying methodology that is the principal focus of the report and an effort is made to address the generalizability and/or range of application of that methodology. Note also that, given the international nature of JBI, papers that deal with specific languages other than English, or with country-specific health systems or approaches, are acceptable for JBI only if they offer generalizable lessons that are relevant to the broad JBI readership, regardless of their country, language, culture, or health system.