GPT-4o in radiology: In-context learning based automatic generation of radiology impressions

Mohammed Mahyoub , Yong Wang , Mohammad T. Khasawneh
{"title":"GPT-4o in radiology: In-context learning based automatic generation of radiology impressions","authors":"Mohammed Mahyoub ,&nbsp;Yong Wang ,&nbsp;Mohammad T. Khasawneh","doi":"10.1016/j.nlp.2025.100145","DOIUrl":null,"url":null,"abstract":"<div><div>Translating radiological findings into clinical impressions is critical for effective medical communication but is often labor-intensive and prone to variability. This study investigates the potential of the GPT-4o large language model (LLM) to automate the generation of radiology impressions from reports, using in-context learning techniques to improve accuracy. Using the MIMIC-IV-CXR dataset, the study compares three generative AI approaches: zero-shot generation (ZS), in-context learning with random examples (ICLR), and in-context learning with semantic nearest neighbors (ICLSN). These methods were evaluated using text summarization metrics such as BERT Score, ROUGE, and METEOR. Statistical tests, including the Kruskal–Wallis and Mann–Whitney U tests, were employed to validate the results. The ICLSN approach significantly outperformed ZS and ICLR, achieving the highest precision (0.9002 ± 0.0471), recall (0.8914 ± 0.0501), and F1 scores (0.8952 ± 0.0432) according to BERT Score. ROUGE and METEOR metrics confirmed these findings, with ICLSN showing notable improvements in ROUGE-1, ROUGE-2, and ROUGE-L scores (0.4673 ± 0.2606, 0.3130 ± 0.2863, and 0.4198 ± 0.2674, respectively). METEOR scores also improved significantly with ICLSN (0.4448 ± 0.2804). The study demonstrates that GPT-4o, particularly when using semantic nearest neighbors for in-context learning, can effectively generate clinically relevant radiology impressions. The method enhances the accuracy and reliability of automated clinical text summarization, suggesting a valuable tool for improving the efficiency and consistency of radiological assessments. Future work should explore fine-tuning to further optimize these outcomes and extend applications to other clinical texts.</div></div>","PeriodicalId":100944,"journal":{"name":"Natural Language Processing Journal","volume":"11 ","pages":"Article 100145"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Language Processing Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949719125000214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Translating radiological findings into clinical impressions is critical for effective medical communication but is often labor-intensive and prone to variability. This study investigates the potential of the GPT-4o large language model (LLM) to automate the generation of radiology impressions from reports, using in-context learning techniques to improve accuracy. Using the MIMIC-IV-CXR dataset, the study compares three generative AI approaches: zero-shot generation (ZS), in-context learning with random examples (ICLR), and in-context learning with semantic nearest neighbors (ICLSN). These methods were evaluated using text summarization metrics such as BERT Score, ROUGE, and METEOR. Statistical tests, including the Kruskal–Wallis and Mann–Whitney U tests, were employed to validate the results. The ICLSN approach significantly outperformed ZS and ICLR, achieving the highest precision (0.9002 ± 0.0471), recall (0.8914 ± 0.0501), and F1 scores (0.8952 ± 0.0432) according to BERT Score. ROUGE and METEOR metrics confirmed these findings, with ICLSN showing notable improvements in ROUGE-1, ROUGE-2, and ROUGE-L scores (0.4673 ± 0.2606, 0.3130 ± 0.2863, and 0.4198 ± 0.2674, respectively). METEOR scores also improved significantly with ICLSN (0.4448 ± 0.2804). The study demonstrates that GPT-4o, particularly when using semantic nearest neighbors for in-context learning, can effectively generate clinically relevant radiology impressions. The method enhances the accuracy and reliability of automated clinical text summarization, suggesting a valuable tool for improving the efficiency and consistency of radiological assessments. Future work should explore fine-tuning to further optimize these outcomes and extend applications to other clinical texts.
放射学中的gpt - 40:基于上下文学习的放射学印象自动生成
将放射学检查结果转化为临床印象对于有效的医学交流至关重要,但这通常需要耗费大量人力,而且容易产生变异。本研究探讨了 GPT-4o 大型语言模型 (LLM) 从报告中自动生成放射学印象的潜力,并使用上下文学习技术来提高准确性。该研究使用 MIMIC-IV-CXR 数据集,比较了三种生成式人工智能方法:零镜头生成 (ZS)、使用随机示例的上下文学习 (ICLR) 和使用语义近邻的上下文学习 (ICLSN)。使用 BERT Score、ROUGE 和 METEOR 等文本摘要指标对这些方法进行了评估。采用了包括 Kruskal-Wallis 和 Mann-Whitney U 检验在内的统计检验来验证结果。ICLSN 方法的性能明显优于 ZS 和 ICLR,根据 BERT Score,精确度(0.9002 ± 0.0471)、召回率(0.8914 ± 0.0501)和 F1 分数(0.8952 ± 0.0432)均为最高。ROUGE 和 METEOR 指标证实了这些发现,其中 ICLSN 在 ROUGE-1、ROUGE-2 和 ROUGE-L 分数上有显著提高(分别为 0.4673 ± 0.2606、0.3130 ± 0.2863 和 0.4198 ± 0.2674)。使用 ICLSN 后,METEOR 评分也有明显改善(0.4448 ± 0.2804)。研究表明,GPT-4o,尤其是在使用语义近邻进行上下文学习时,能有效生成与临床相关的放射学印象。该方法提高了自动临床文本总结的准确性和可靠性,为提高放射学评估的效率和一致性提供了有价值的工具。未来的工作应探索微调以进一步优化这些结果,并将应用扩展到其他临床文本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信