Dong Jiang, Jonathan P. Hill*, Joel Henzie, Ho Ngoc Nam, Quan Manh Phung, Liyang Zhu, Jie Wang, Wei Xia, Yingji Zhao, Yunqing Kang, Toru Asahi, Ran Bu, Xingtao Xu* and Yusuke Yamauchi*,
{"title":"Selective Electrochemical Capture of Monovalent Cations Using Crown Ether-Functionalized COFs","authors":"Dong Jiang, Jonathan P. Hill*, Joel Henzie, Ho Ngoc Nam, Quan Manh Phung, Liyang Zhu, Jie Wang, Wei Xia, Yingji Zhao, Yunqing Kang, Toru Asahi, Ran Bu, Xingtao Xu* and Yusuke Yamauchi*, ","doi":"10.1021/jacs.4c1634610.1021/jacs.4c16346","DOIUrl":null,"url":null,"abstract":"<p >Electrochemical adsorption offers a promising approach for the separation of monovalent cations, which is an important but challenging subject in separation science. However, progress in this area has been hampered by the lack of suitable materials with effective ion selectivity. In this work, we present the synthesis of covalent organic frameworks (COFs) functionalized with a series of crown ethers (NCx-TAB-COFs, x donate 12, 15, 18, indicating the size of crown ether) for the efficient and highly selective electrochemical capture of monovalent cations. In our design, crown ether moieties act as confinement sites, imparting high selectivity for different monovalent cations depending on the cavity dimensions of the crown ether present. COFs electrodes prepared using the novel crown-COFs exhibit superior performance for the selective sequestration of monovalent (alkali metal) cations. Notably, 18-crown-6 ether-substituted COF (NC18-TAB-COF) shows a remarkable selectivity (14.26) for K<sup>+</sup> over Na<sup>+</sup> and a substantial Rb<sup>+</sup>/Na<sup>+</sup> selectivity of 22.4. Furthermore, NCx-TAB-COFs maintain their remarkable selectivity and capacity under mixed-cation conditions. Density functional theory calculations and molecular dynamics simulations suggest that the unexpectedly high selectivity for larger cations is likely due to diverse binding modes in conjunction with the porous structure of the COFs. Given their lower dehydration-free energies and smaller hydrodynamic radii, K<sup>+</sup>, Rb<sup>+</sup>, and Cs<sup>+</sup> more readily permeate the confined channels of COFs. In contrast, Na<sup>+</sup> and Li<sup>+</sup>, with higher dehydration-free energies and hydrodynamic radii, diffuse into the NCx-TAB-COFs structure at a much slower rate and are bound predominantly to the surfaces of the COFs.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"147 15","pages":"12460–12468 12460–12468"},"PeriodicalIF":15.6000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.4c16346","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Electrochemical adsorption offers a promising approach for the separation of monovalent cations, which is an important but challenging subject in separation science. However, progress in this area has been hampered by the lack of suitable materials with effective ion selectivity. In this work, we present the synthesis of covalent organic frameworks (COFs) functionalized with a series of crown ethers (NCx-TAB-COFs, x donate 12, 15, 18, indicating the size of crown ether) for the efficient and highly selective electrochemical capture of monovalent cations. In our design, crown ether moieties act as confinement sites, imparting high selectivity for different monovalent cations depending on the cavity dimensions of the crown ether present. COFs electrodes prepared using the novel crown-COFs exhibit superior performance for the selective sequestration of monovalent (alkali metal) cations. Notably, 18-crown-6 ether-substituted COF (NC18-TAB-COF) shows a remarkable selectivity (14.26) for K+ over Na+ and a substantial Rb+/Na+ selectivity of 22.4. Furthermore, NCx-TAB-COFs maintain their remarkable selectivity and capacity under mixed-cation conditions. Density functional theory calculations and molecular dynamics simulations suggest that the unexpectedly high selectivity for larger cations is likely due to diverse binding modes in conjunction with the porous structure of the COFs. Given their lower dehydration-free energies and smaller hydrodynamic radii, K+, Rb+, and Cs+ more readily permeate the confined channels of COFs. In contrast, Na+ and Li+, with higher dehydration-free energies and hydrodynamic radii, diffuse into the NCx-TAB-COFs structure at a much slower rate and are bound predominantly to the surfaces of the COFs.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.