{"title":"On the parenthesisations of matrix chains: All are useful, few are essential","authors":"Francisco López, Lars Karlsson, Paolo Bientinesi","doi":"10.1007/s10878-025-01290-7","DOIUrl":null,"url":null,"abstract":"<p>The product of a matrix chain consisting of <i>n</i> matrices can be computed in <span>\\(C_{n-1}\\)</span> (Catalan’s number) different ways, each identified by a distinct parenthesisation of the chain. The best algorithm to select a parenthesisation that minimises the cost runs in <span>\\(O(n \\log n)\\)</span> time. Approximate algorithms run in <i>O</i>(<i>n</i>) time and find solutions that are guaranteed to be within a certain factor from optimal; the best factor is currently 1.155. In this article, we first prove two results that characterise different parenthesisations, and then use those results to improve on the best known approximation algorithms. Specifically, we show that (a) each parenthesisation is optimal somewhere in the problem domain, and (b) exactly <span>\\(n + 1\\)</span> parenthesisations are essential in the sense that the removal of any one of them causes an unbounded penalty for an infinite number of problem instances. By focusing on essential parenthesisations, we improve on the best known approximation algorithm and show that the approximation factor is at most 1.143.</p>","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"60 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10878-025-01290-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The product of a matrix chain consisting of n matrices can be computed in \(C_{n-1}\) (Catalan’s number) different ways, each identified by a distinct parenthesisation of the chain. The best algorithm to select a parenthesisation that minimises the cost runs in \(O(n \log n)\) time. Approximate algorithms run in O(n) time and find solutions that are guaranteed to be within a certain factor from optimal; the best factor is currently 1.155. In this article, we first prove two results that characterise different parenthesisations, and then use those results to improve on the best known approximation algorithms. Specifically, we show that (a) each parenthesisation is optimal somewhere in the problem domain, and (b) exactly \(n + 1\) parenthesisations are essential in the sense that the removal of any one of them causes an unbounded penalty for an infinite number of problem instances. By focusing on essential parenthesisations, we improve on the best known approximation algorithm and show that the approximation factor is at most 1.143.
期刊介绍:
The objective of Journal of Combinatorial Optimization is to advance and promote the theory and applications of combinatorial optimization, which is an area of research at the intersection of applied mathematics, computer science, and operations research and which overlaps with many other areas such as computation complexity, computational biology, VLSI design, communication networks, and management science. It includes complexity analysis and algorithm design for combinatorial optimization problems, numerical experiments and problem discovery with applications in science and engineering.
The Journal of Combinatorial Optimization publishes refereed papers dealing with all theoretical, computational and applied aspects of combinatorial optimization. It also publishes reviews of appropriate books and special issues of journals.