From Existing and New Nuclear and Astrophysical Constraints to Stringent Limits on the Equation of State of Neutron-Rich Dense Matter

IF 11.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Hauke Koehn, Henrik Rose, Peter T. H. Pang, Rahul Somasundaram, Brendan T. Reed, Ingo Tews, Adrian Abac, Oleg Komoltsev, Nina Kunert, Aleksi Kurkela, Michael W. Coughlin, Brian F. Healy, Tim Dietrich
{"title":"From Existing and New Nuclear and Astrophysical Constraints to Stringent Limits on the Equation of State of Neutron-Rich Dense Matter","authors":"Hauke Koehn, Henrik Rose, Peter T. H. Pang, Rahul Somasundaram, Brendan T. Reed, Ingo Tews, Adrian Abac, Oleg Komoltsev, Nina Kunert, Aleksi Kurkela, Michael W. Coughlin, Brian F. Healy, Tim Dietrich","doi":"10.1103/physrevx.15.021014","DOIUrl":null,"url":null,"abstract":"Through continuous progress in nuclear theory and experiment and an increasing number of neutron-star (NS) observations, a multitude of information about the equation of state (EOS) for matter at extreme densities is available. To constrain the EOS across its entire density range, this information needs to be combined consistently. However, the impact and model dependency of individual observations vary. Given their growing number, assessing the various methods is crucial to compare the respective effects on the EOS and discover potential biases. For this purpose, we present a broad compendium of different constraints and apply them individually to a large set of EOS candidates within a Bayesian framework. Specifically, we explore different ways of how chiral effective field theory and perturbative quantum chromodynamics can be used to place a likelihood on EOS candidates. We also investigate the impact of nuclear experimental constraints, as well as different radio and x-ray observations of NS masses and radii. This is augmented by reanalyses of the existing data from binary neutron star coalescences, in particular of GW170817, with improved models for the tidal waveform and kilonova light curves, which we also utilize to construct a tight upper limit of 2.39</a:mn>M</a:mi>⊙</a:mo></a:msub></a:math> on the TOV mass based on GW170817’s remnant. Our diverse set of constraints is eventually combined to obtain stringent limits on NS properties. We organize the combination in a way to distinguish between constraints where the systematic uncertainties are deemed small and those that rely on less conservative assumptions. For the former, we find the radius of the canonical <d:math xmlns:d=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><d:mn>1.4</d:mn><d:msub><d:mi>M</d:mi><d:mo stretchy=\"false\">⊙</d:mo></d:msub></d:math> neutron star to be <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:msub><g:mi>R</g:mi><g:mn>1.4</g:mn></g:msub><g:mo>=</g:mo><g:mn>12.2</g:mn><g:msubsup><g:mn>6</g:mn><g:mrow><g:mo>−</g:mo><g:mn>0.91</g:mn></g:mrow><g:mrow><g:mo>+</g:mo><g:mn>0.80</g:mn></g:mrow></g:msubsup><g:mtext> </g:mtext><g:mtext> </g:mtext><g:mi>km</g:mi></g:math> and the TOV mass at <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:msub><i:mi>M</i:mi><i:mrow><i:mi>TOV</i:mi></i:mrow></i:msub><i:mo>=</i:mo><i:mn>2.2</i:mn><i:msubsup><i:mn>5</i:mn><i:mrow><i:mo>−</i:mo><i:mn>0.22</i:mn></i:mrow><i:mrow><i:mo>+</i:mo><i:mn>0.42</i:mn></i:mrow></i:msubsup><i:msub><i:mi>M</i:mi><i:mo stretchy=\"false\">⊙</i:mo></i:msub></i:math> (95% credibility). Including all the presented constraints yields <l:math xmlns:l=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><l:msub><l:mi>R</l:mi><l:mn>1.4</l:mn></l:msub><l:mo>=</l:mo><l:mn>12.2</l:mn><l:msubsup><l:mn>0</l:mn><l:mrow><l:mo>−</l:mo><l:mn>0.48</l:mn></l:mrow><l:mrow><l:mo>+</l:mo><l:mn>0.50</l:mn></l:mrow></l:msubsup><l:mtext> </l:mtext><l:mtext> </l:mtext><l:mi>km</l:mi></l:math> and <n:math xmlns:n=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><n:msub><n:mi>M</n:mi><n:mrow><n:mi>TOV</n:mi></n:mrow></n:msub><n:mo>=</n:mo><n:mn>2.3</n:mn><n:msubsup><n:mn>0</n:mn><n:mrow><n:mo>−</n:mo><n:mn>0.20</n:mn></n:mrow><n:mrow><n:mo>+</n:mo><n:mn>0.07</n:mn></n:mrow></n:msubsup><n:msub><n:mi>M</n:mi><n:mo stretchy=\"false\">⊙</n:mo></n:msub></n:math>. When comparing these limits to individual data points, we find that the quoted radius of HESS J1731-347 displays noticeable tension with other constraints. Constraining microphysical properties of the EOS proves more challenging. For instance, the symmetry energy slope is restricted to <q:math xmlns:q=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><q:msub><q:mi>L</q:mi><q:mi>sym</q:mi></q:msub><q:mo>=</q:mo><q:msubsup><q:mn>48</q:mn><q:mrow><q:mo>−</q:mo><q:mn>25</q:mn></q:mrow><q:mrow><q:mo>+</q:mo><q:mn>21</q:mn></q:mrow></q:msubsup><q:mtext> </q:mtext><q:mtext> </q:mtext><q:mi>MeV</q:mi></q:math>, where this constraint is mainly dominated by our reanalysis of the PREX-II and CREX experiment. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"22 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.15.021014","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Through continuous progress in nuclear theory and experiment and an increasing number of neutron-star (NS) observations, a multitude of information about the equation of state (EOS) for matter at extreme densities is available. To constrain the EOS across its entire density range, this information needs to be combined consistently. However, the impact and model dependency of individual observations vary. Given their growing number, assessing the various methods is crucial to compare the respective effects on the EOS and discover potential biases. For this purpose, we present a broad compendium of different constraints and apply them individually to a large set of EOS candidates within a Bayesian framework. Specifically, we explore different ways of how chiral effective field theory and perturbative quantum chromodynamics can be used to place a likelihood on EOS candidates. We also investigate the impact of nuclear experimental constraints, as well as different radio and x-ray observations of NS masses and radii. This is augmented by reanalyses of the existing data from binary neutron star coalescences, in particular of GW170817, with improved models for the tidal waveform and kilonova light curves, which we also utilize to construct a tight upper limit of 2.39M⊙ on the TOV mass based on GW170817’s remnant. Our diverse set of constraints is eventually combined to obtain stringent limits on NS properties. We organize the combination in a way to distinguish between constraints where the systematic uncertainties are deemed small and those that rely on less conservative assumptions. For the former, we find the radius of the canonical 1.4M neutron star to be R1.4=12.260.91+0.80 km and the TOV mass at MTOV=2.250.22+0.42M (95% credibility). Including all the presented constraints yields R1.4=12.200.48+0.50 km and MTOV=2.300.20+0.07M. When comparing these limits to individual data points, we find that the quoted radius of HESS J1731-347 displays noticeable tension with other constraints. Constraining microphysical properties of the EOS proves more challenging. For instance, the symmetry energy slope is restricted to Lsym=4825+21 MeV, where this constraint is mainly dominated by our reanalysis of the PREX-II and CREX experiment. Published by the American Physical Society 2025
从现有的和新的核与天体物理学约束到对中子富密集物质状态方程的严格限制
通过核理论和实验的不断进步以及越来越多的中子星观测,我们获得了大量关于极端密度下物质状态方程的信息。为了在整个密度范围内约束EOS,需要一致地组合这些信息。然而,个别观测的影响和模式依赖性各不相同。鉴于它们的数量越来越多,评估各种方法对于比较各自对EOS的影响并发现潜在的偏差至关重要。为此,我们提出了不同约束的广泛概要,并将它们单独应用于贝叶斯框架内的大量EOS候选对象。具体来说,我们探索了如何使用手性有效场论和微扰量子色动力学的不同方法来对EOS候选者进行可能性分析。我们还研究了核实验约束的影响,以及不同的射电和x射线观测对NS质量和半径的影响。通过对现有双中子星合并数据的重新分析,特别是GW170817的数据,我们改进了潮汐波形和千新星光曲线的模型,并利用GW170817的残余物构建了TOV质量的严格上限2.39M⊙。我们的各种约束最终组合在一起,以获得对NS属性的严格限制。我们以一种方式组织组合,以区分系统不确定性被认为很小的约束和依赖于不那么保守的假设的约束。对于前者,我们发现标准1.4M⊙中子星的半径为R1.4=12.26−0.91+0.80 km,在MTOV处的TOV质量为2.25−0.22+0.42M⊙(95%可信)。包括所有提出的约束条件,得到R1.4=12.20−0.48+0.50 km和MTOV=2.30−0.20+0.07M⊙。当将这些限制与单个数据点进行比较时,我们发现引用的HESS J1731-347的半径与其他约束表现出明显的张力。事实证明,限制EOS的微物理特性更具挑战性。例如,对称能量斜率被限制在Lsym=48−25+21 MeV,其中这个约束主要是由我们对PREX-II和CREX实验的再分析决定的。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review X
Physical Review X PHYSICS, MULTIDISCIPLINARY-
CiteScore
24.60
自引率
1.60%
发文量
197
审稿时长
3 months
期刊介绍: Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信